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Synthetic data distillation enables the
extraction of clinical information at scale

Check for updates

Elizabeth Geena Woo1,2,3,5, Michael C. Burkhart1,3,5, Emily Alsentzer4 & Brett K. Beaulieu-Jones1,3

Large-languagemodels (LLMs) show promise for clinical note information extraction, but deployment
challenges includehigh computational costs andprivacy concerns.Weused synthetic data distillation
to fine-tune smaller, open-source LLMs to achieve performance comparable to larger models while
enabling local hardware deployment or reduced cloud costs. Using Llama-3.1-70B-Instruct, we
generated synthetic question-answer training pairs to fine-tune smaller Llama models. We evaluated
performance across three tasks: synthetic clinical trial criteria, the i2b2 2018 Clinical Trial Eligibility
Challenge, and apixaban trial criteria questions. The 8B-parameter model achieved high accuracy
across all tasks and sometimes outperformed the 70B-Instruct teacher model. Fine-tuning with only
the most challenging questions still improved performance, demonstrating the value of targeted
training. Results from 3B- and 1B-parameter models showed a clear size-performance tradeoff. This
work demonstrates synthetic data distillation’s potential for enabling scalable clinical information
extraction.

Research with real-world data typically relies on human-labeled data for
training and validation. Though effective, human annotation can be costly,
time-consuming, and prone to errors. Recent research suggests that the few-
shot capabilities of generative large language models (LLMs) can be used to
annotate text data with reduced time and cost burden1–4. These capabilities
of generative LLMs can be applied to information extraction from patient
clinical notes. Traditional methods for information extraction include rule-
based approaches, which can be limited by low recall due to user-defined
rules and variability of medical texts, and supervised machine learning
models, which can be limited by a lack of labeled training data5–7. The zero-
and few-shot capabilities of LLMs can enable more flexible and scalable
information extraction from clinical notes without the need for extensive
manual annotation.

While promising, state-of-the-art LLMs (such as GPT-48) are chal-
lenging to deploy in a scalable way in healthcare systems. Many of these
models (including those from OpenAI, Anthropic, and Google) are pro-
prietary and come with limited license terms. Concerns about patient
privacy and lack of transparency in these proprietary models also lead to
some hesitancy in their adoption for healthcare institutions9. Additionally,
these models can be extremely large and require substantial computational
resources (e.g., Llama405B), limiting their deploymentwithin typical health
system IT settings10. So far, many of the successful deployments have been
through partnerships where industry partners subsidize costs or provide in-

kind contributions in terms of computing and engineering. This limits the
number and type of institutions that are able to participate and the use cases
to which generative AI can be applied. Additionally, setting up these part-
nerships can require additional administrative lift (e.g., legal negotiation and
information security evaluation) compared to performing analyses in
existing environments, whether institution-hosted or existing private cloud
deployments11. Even where solutions have been widely available, such as
partnerships for draft inbox responses12, the ability to achieve similar per-
formance with smaller models will make customizing models to a specific
institution, as well as serving inference requests at scale, substantially
cheaper and less cumbersome.

Challenges in generativeAI around scalability necessitate cost-effective
and privacy-conscious solutions, which could be addressed through the
development of open-source LLMs that can be integrated into existing
healthcare system infrastructure. Open-source LLMs historically did not
perform as well as their proprietary counterparts13, but recent progress has
led to very competitive models across most evaluation metrics14. Recent
efforts havebeenmade to evaluate the capacity of locally deployableLLMs to
extract clinical information with low hardware requirements15.

Synthetic data generation, distillation, and instruction tuning offer an
opportunity to close the gap between open-source and proprietary models.
Larger models can generate synthetic data that can be used to fine-tune a
smaller model for a given task, with the idea that the smaller model could
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mirror the performance of the largermodel for that task. This process, called
distillation, has been shown to improve the performance of thesemodels16,17.
It allows researchers todevelopmodelswith thepotential forwideradoption
by reducing computational cost without sacrificing performance. Knowl-
edge and data distillation approaches have been used for medical applica-
tions, including health event prediction18, medical dataset sharing19, and
medical image analysis20,21. It can be challenging to access annotated data for
medical applications due to privacy concerns, regulatory constraints, and
the time- and resource-intensive process of manual annotation. Synthetic
data generated by LLMs can serve as a potential alternative and have suc-
cessfully been used as training data for knowledge distillation
approaches22–25. Data augmentation approaches with synthetic data can be
used to enhance model performance by producing high-quality, diverse
training examples from which the LLM can learn26. For example, fine-
tuning on synthetic data generated by GPT-4 improved zero-shot perfor-
mance of Llama models27.

While synthetic data distillation approaches are actively evolving, there
have been few approaches specifically focused on clinical information
extraction from unstructured clinical notes. The ability to extract clinical
information at scale from unstructured clinical notes could enhance patient
phenotyping, which is important for research and clinical applications.
Current phenotyping approaches often rely on structured data such as ICD
codes,which are used for billing purposes andmaynot reflect the nuances of
the patient’s condition. This can limit analytical precision and potentially
introduce biases when studying research outcomes. Unstructured clinical
notes, which contain information including medical, social, and family
history that may not be captured by structured data, could offer more
granular and reliable insight into patient history, particularly in hetero-
geneous populations where there can be large differences in disease mani-
festation and progression28,29. LLMs can perform zero-shot information
extraction fromnotes to improve phenotyping accuracy over the use of ICD
codes, without the need for extensive manual annotation30.

Another application for these methods is in clinical trial recruitment,
which requires a comprehensive evaluation of both clinical trial eligibility
criteria and patient medical histories in order to appropriately match
patients who meet trial requirements31–34. Synthetic data distillation is par-
ticularly useful in this case where less labeled data (i.e., paired patient-
criterion matching annotations) is available. A recent study developed an
LLMframework that usedGPT-4 to predict patient eligibility on a criterion-
level basis with explanations and achieved near expert-level performance35.
Recentwork comparingproprietary andopen-sourcemodels suggested that
distillation, along with fine-tuning, can improve the performance of open-
source LLMs for patient trial matching, approaching that of GPT-436. As
opposed to Nievas et al.36, we used an open-source model to generate syn-
thetic data, generated our data with MIMIC-III notes, and fine-tuned with
QLoRA37. The fine-tunedmodels were evaluated against both the data used
to create the synthetic question-answerpairs (MIMIC-III) aswell as external
data. Additionally, it is critical to use open-sourcemodels, even as a teacher.
Deploying a model fine-tuned on GPT-4 outputs is likely against OpenAI’s
terms of service38 as this would be deemed competing with OpenAI. As a
whole, these developments show promise for the capacity of LLMs to aid in
clinical information extraction for patient-trial matching.

Related work has also explored context distillation39 and the inclusion of
intermediate reasoning steps and rationales40,41. For example, Huang et al.40

conducted ablation studies to show the effect of fine-tuning on reasoning for
self-improvement. Hsieh et al.41 extracted chain-of-thought rationales and
labels, which they used to fine-tune smaller T5 models. It can be informative
to consider the impact of including model-generated rationales as well as
other subsets of synthetic data. Examining model performance in answering
single-order questions (e.g., what was the patient’s highest creatinine value)
compared to questions requiring multiple steps (e.g., does this patient fit this
trial’s eligibility criteria?) could provide additional insights.

In this work, we demonstrate the ability to perform synthetic data
distillation for scalable clinical note annotation, using a large open-source
model to generate realistic questions basedonpatient clinical records,which

can be used to train a smaller model that can perform inference. Addi-
tionally, we perform an ablation study to understand which types of syn-
thetic data yield optimal performance and the tradeoff between model size
and performance.We conduct comprehensive evaluations against multiple
datasets. This is critical becauseweobserve it is substantially easier to achieve
strongperformance against synthetic datawithmanual reviewasopposed to
fully human-generated evaluations. Alongside the work, we release source
code which provides a framework for meaningful, clinical information
extraction, synthetic data generation (https://github.com/bbj-lab/clinical-
synthetic-data-distil), and an annotation tool built around making the
annotation process faster, particularly when LLMpredicted annotations are
already available (https://github.com/bbj-lab/annotation-ui). We are also
releasing two newly manually annotated datasets to PhysioNet, which will
be available via the same data use agreement as MIMIC-III/IV : (1)
Annotated Synthetic Trial Criteria Questions: 1000 questions generated
by the large 70B model as Synthetic Data, which have been human-
reviewed, and (2)ApixabanTrialCriteriaQuestions:2300questions based
on trial criteria from the ARISTOTLE apixaban clinical trial42,43.

Results
The process of knowledge distillation by generating synthetic question and
answer pairs using a largemodel (Llama 3.1 70B-Instruct) to teach a smaller
model (e.g., Llama 3.1 8B-Instruct, Llama 3.2 3B-Instruct, Llama 3.2 1B-
Instruct) is described in Fig. 1.We then evaluated the distillation process on
three distinct tasks, 1.) a set of synthetic trial criteria questions (1000) which
we manually reviewed (Table 2), 2.) real world data from the i2b2 n2c2
clinical trial cohort challenge44 (Fig. 2, Table 3), and 3.) a set of 2,300
questions derived from the MIMIC real world dataset to emulate the elig-
ibility criteria of the ARISTOTLE apixaban clinical trial42,43 (Table 4).

The knowledge distillation process worked by passing in a discharge
summary to Llama 3.1 70B-Instruct along with prompt instructions (Sup-
plementary Table 1) to create questions meeting specific criteria (e.g., yes/
no, numeric, or questions that can not be answered based on the content of
the note). In addition to questions, themodel was taskedwith providing the
section of the discharge summary an answer could be found (e.g., Pertinent
Results), the source or exact text that allowed the model to answer
the question, and an explanation ofwhy the answerwas correct based on the
source and rest of the note. The model was also tasked with estimating the
difficulty of the question it created (Supplementary Table 2).

Next, these questionswerefiltered depending onwhichmodelwas being
fine-tuned (Table 1). For example, 8B-All includes all of the generated syn-
theticquestionandanswerpairs (asdo3B-Alland1B-All),8B-H-25Kincludes
only the 25,000 questions the 70B-Instruct model ranked hardest within each
category, 8B-NB-Only includes the 25,000 hardest numeric and boolean (yes/
no)questions, and8B-No-S includes the 25,000hardest questionsof each type
but does not finetune on any of the supporting information (namely, the
explanation, the section themodelbelieved theanswerwas inwhengenerating
thequestion, or the source,which is the exact textwhich allowed for themodel
to answer the question). Next, QLoRA fine-tuning (detailed inMethods) was
performed for eachof thequestioncategories to result in sixfine-tunedmodels
(8B-All, 8B-H-25k, 8B-NB-Only, 8-No-S, 3B-All, and 1B-All) in addition to
the four instructmodelsopen-sourcedbyMeta(70B-Instruct,8B-Instruct, 3B-
Instruct, and 1B-Instruct) (Table 1).

Each model was evaluated on three tasks: (i) annotated synthetic trial
criteria questions, (ii) i2b2Clinical Trial Eligibility Criteria Cohort Selection
shared task from the 2018 National NLP Clinical Challenges, and (iii)
apixaban trial criteria. We report performance metrics including Balanced
Accuracy, which measures the average between sensitivity and specificity
and can be used on imbalanced datasets, andMicro-F1 score.Micro-F1was
the primary metric used to judge the i2b2 challenge, which permits direct
comparison between our results and challenge entries (for the test set).

Synthetic Data Evaluation
We evaluated model performance on a manually annotated subset of 1000
generated examples from the hold-out test set described in the methods
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datasets subsection (Table 2). The 8B-All model achieves the best overall
accuracy (89.30%), outperforming even the 70B-Instruct model used for
creating the synthetic data (76.20%). This was especially visible in the “NA”
categories, where there appears to be a strong impact of training models
explicitly on questions that cannot be answered based on the context (note)
provided. Within each category, 8B-All and 8B-H-25k improved over 8B-
Instruct, reflecting the impact of fine-tuning. 8B-H-25k also outperformed
70B-Instruct overall, suggesting that while the model benefits from further
fine-tuning, a relatively small dataset of 25k examples can still provide an
appreciable benefit. Unsurprisingly, the 8B-NB-Only model which was not
fine-tuned on any “NA” data struggles in both of the NA columns, but it
does perform very well on questions of numeric and boolean type and is
actually the top performer for numeric questions. When comparing
between the 8B-All, 3B-All, and 1B-All models, we find a general tradeoff
betweenmodel size and performance, with a notable exception of the ability
of the 3B-All and 1B-All models to identify questions that it could not
answer (the NA-type questions).

i2b2 clinical trial eligibility challenge evaluation
Wenext evaluated the performance of all base andfine-tunedmodels on the
i2b2 2018 Clinical Trial Eligibility Challenge (Fig. 2). Because we did not
train on or otherwise use these data in our fine-tuning process we were able
to assess the performance ofmodels across both the train and test sets for the
original i2b2 challenge.

We evaluated two different values of two parameters, temperature and
top_p (see Methods). We had a hypothesis that sampling strategies (i.e.,
higher temperature) might work well to force the model to provide an
answer that aligned well with the explanation. However, we observed that
the temperature didnot have a large impact, and a temperature of 0 seems to
slightly outperform higher temperatures (Supplementary Table 3). The
70B-Instructmodel performed the best on both train and test data. The two
fine-tuned models, which included all types and supporting information

(8B-All and8B-H-25K)outperformed thebase 8B-Instructmodel. Thefine-
tuned models that either did not include all types (8B-NB-Only) or did not
include supporting information (8B-No-S) hadworse performance than the
base 8B-Instruct model. When comparing the 8B-All, 3B-All, and 1B-All
models, we find that performance decreases as model size decreases. This
held on both the training and test folds, for both balanced accuracy and
micro-F1 score.

An interesting trendweobserved throughout thisworkwas the need to
isolate criteria and thus the prompts provided to the models into questions
that required only single order answers. This was illustrated when com-
paring the performance of both the base models and fine-tuned models for
their ability to either a.) directly answer a prompt question for a given
criterion (i.e. direct boolean “yes” or “no”) vs. b.) extracting the numeric
value relevant to the criterion and thenperforming post-processing to arrive
at a boolean “yes” or “no” answer (Table 3).Within the i2b2 n2c2 challenge,
two questions asked whether labs were abnormal (serum creatinine and
hemoglobin levels). Across allmodels, numeric extraction followedby post-
processing achieved higher performance compared to asking the model to
directly answer the question.

Trial Criteria Evaluation
As the third evaluation task, we compared the performance of the base and
fine-tuned models using manual annotations based on 23 questions
resembling eligibility criteria from the apixaban clinical trial for a random
sample of 100 patient notes fromMIMIC-IV (Table 4). The fine-tuned 8B-
All model achieved high performance, exceeding Balanced Accuracy and
Micro-F1 of 0.8 across all criteria assessed, with an overall average Balanced
Accuracy of 0.93 and Micro-F1 of 0.94. This fine-tuned model out-
performed the 8B-Instruct (Balanced Accuracy = 0.84, Micro-F1 = 0.86)
and even the 70B-Instruct model (Balanced Accuracy = 0.89, Micro-
F1 = 0.92). Themodelfine-tuned on themost difficult 25,000 questions, 8B-
Instruct-H-25K, achieved a similarly high performance across criteria

Fig. 1 | Synthetic distillation training workflow. MIMIC-III records, outlined in
green, are provided to the 70B-parameter Llama-3.1 model, which in turn generates
the elements outlined in blue. After post-processing, the elements outlined in purple

are provided to the 8B-parameter Llama-3.1model (or 3B- or 1B-parametermodels)
for fine-tuning the “All” version of the model.
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(average BalancedAccuracy= 0.95,Micro-F1 = 0.94), suggesting that either
fewer total questions may be needed for fine-tuning, or that more difficult
questions offer greater value in fine-tuning. Average performance (both
balanced accuracy and balanced micro-F1) decreased monotonically with
model size over the 8B-All, 3B-All, and 1B-All models. For eachmodel size,
there was a sizeable performance improvement due to finetuning (com-
paring the Instruct and All versions for each model size).

There were some criteria where base 8B-Instruct model had relatively
lower performance, including extraction of aspartate aminotransferase
(AST) (Balanced Accuracy = 0.54, Micro-F1 = 0.54), blood glucose
(Balanced Accuracy = 0.25, Micro-F1 = 0.25), and left ventricular ejection
fraction (Balanced Accuracy = 0.72, Micro-F1 = 0.72). The use of the larger
70B-Instruct model dramatically improved performance for these criteria,
exceeding Balanced Accuracy andMicro-F1 of 0.84. The fine-tunedmodels
8B-All and8B-H-25kperformed comparably to the 70Bmodel, and in some

cases outperformed it. All three models for the AST criteria led to Balanced
Accuracy and Micro-F1 scores of 0.94 and above. For blood glucose, the
fine-tunedmodels 8B-All (BalancedAccuracy = 0.98,Micro-F1 = 0.98) and
8B-H-25k (Balanced Accuracy = 0.94, Micro-F1 = 0.94) achieved higher
performance than the 70B-Instruct model (Balanced Accuracy = 0.84,
Micro-F1 = 0.84). For identification of hemorrhagic tendencies, the model
fine-tunedon the 25kmost difficult questions led to the biggest performance
improvement (Balanced Accuracy = 0.96, Micro-F1 = 0.92) compared to
both the 8B-All (Balanced Accuracy = 0.96, Micro-F1 = 0.92) and 70B-
Instruct models (Balanced Accuracy = 0.96, Micro-F1 = 0.92).

For some criteria, the 70B-Instruct model did not perform as well as
any of the 8B-Instruct models, including the base model. This was the case
when detecting the presence of atrial fibrillation (8B-Instruct: Balanced
Accuracy= 0.98,Micro-F1 = 0.97; 70B-Instruct:BalancedAccuracy= 0.65,
Micro-F1 = 0.84) and whether there was planned/past ablation for atrial

Fig. 2 | Comparison of model performance for the
i2b2 (n2c2) Clinical Trial Eligibility Challenge.
Evaluation includes the Training Set (a, c) because
these data were not included during any of the pre-
processing, hyperparameter selection or fine-tuning
process of the models. All evaluations are zero-shot,
but performance on Training (a, c) is separated from
Test set (b, d) for clarity. (70B and 8B are Llama-3.1,
3B and 1B are Llama-3.2).
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fibrillation (8B-Instruct: Balanced Accuracy = 0.89, Micro-F1 = 0.98; 70B-
Instruct: Balanced Accuracy = 0.65, Micro-F1 = 0.94). There were also
some criteria, including creatinine and platelets, where the models did not
perform as well as other criteria as no model exceeded 0.85 for either
balanced accuracy or micro-F1. Of the manually annotated notes, 60% did
not have a numeric value for platelet count available in the note, while only
3%didnot have a serumcreatinine value available (SupplementaryTable 4).
This rate may be at least in part due to the fact that the de-identification
process for MIMIC-III seemed to accidentally redact some platelet values.
During the manual annotation process we did not observe this occurring
with other laboratory values.

Resource requirements
Data distillation allowed the models to be run with vastly reduced
resource requirements compared to the 70B-Instruct model. All model
evaluation was done on the Center for Research Informatics’ “Randi”
cluster at the University of Chicago. The cluster’s GPU nodes each
contain 8 Nvidia A100 GPU’s with two 16-core 3.0-GHz AMD Milan
processors. We monitored seconds/example, tokens in/second, and
tokens out/second for both the 8B-parameter and 70-B parameter
architectures and reported these in Fig. 3. These differences could
translate into meaningful cost savings. For example, performing a
study of the Apixaban criteria (23 questions) for 10,000 patients to
identify a cohort on the least expensive cloud provider would be $3132
less expensive for the 8B vs. 70B parameter models (see Supplemen-
tary Table 5 for a comparison of current rates among the main pro-
viders). In this example, running the 8B-parameter model would cost
less than $1000 (0.535 sec./ex. * 230k ex. * 1/3600 hr./sec. * $27.2/hr. =
$929), while the 70B-parameter model would cost over $4000
(2.34 sec./ex. * 230k ex. * 1/3600 hr./sec. * $27.2/hr. = $4066).

Discussion
In this study, we present an approach to improve the scalability of open-
source LLMs for clinical information extraction using synthetic data dis-
tillation. We used the larger Llama-3.1-70B-Instruct to generate synthetic
data, consisting of question-answer pairs with supporting information and
difficulty scores. These were used to fine-tune smaller models: Llama-3.1-
8B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.2-1B-Instruct. We found
a general tradeoff between the size and performance of the finetuned
models. We also explored the impact of fine-tuning on different amounts
and subsets of synthetic data (including one fine-tuned with all data, one
fine-tuned with only the hardest 25 K questions, one fine-tuned without
questions where the note does not contain the answer - NA, and one fine-
tuned without any supporting information). We observe that the inclusion
of NA and supporting information was critical to the high performance of
fine-tuned models, especially when applied to fully human-generated eva-
luations as opposed to synthetic data with human review.When evaluating
the accuracy of these models based on manually annotated synthetic data,
we found that themodelfine-tuned on all synthetic data (8B-All) achieved a
high overall accuracy that exceeded that of a larger base model (70B-
Instruct).We found that thesefine-tunedmodels also performedwell across
different clinical tasks, including the i2b2 Clinical Trial Eligibility Challenge
and a dataset designed to resemble real eligibility criteria from the apixaban
clinical trial. The fine-tuned models can achieve performance comparable
to, and in some cases exceeding, that of even the largermodel that served as
the teacher. Even when fine-tuning is performed using only a subset of the
hardest questions in the synthetic dataset, the performance still improves
over basemodels, suggesting that targeted fine-tuningwith less data can still
be beneficial. Finally, we release several artifacts we believe will be beneficial
to researchers further developing approaches for clinical information
extraction: (a) source code - both the framework for synthetic data

Table 1 | Comparison of the different models that were compared throughout the clinical information extraction tasks

Model
Name

Base Model Fine-
Tuned

Question
difficulty

Question Type Supporting information (Section, Source,
Explanation)

Boolean Numeric Boolean-
NA

Numeric-
NA

70B-
Instruct

Llama-3.1
70B-
Instruct (Meta)

- ✔ ✔ ✔ ✔ ✔

8B-
Instruct

Llama-3.1
8B-
Instruct (Meta)

- ✔ ✔ ✔ ✔ ✔

8B-All Llama-3.1
8B-
Instruct (Meta)

✔ All ✔

N = 212,132
✔

N = 209,637
✔

N = 106,288
✔

N = 106,245
✔

8B-H-25K Llama-3.1
8B-
Instruct (Meta)

✔ 25 K highest
difficulty

✔

N = 25,000
✔

N = 25,000
✔

N = 25,000
✔

N = 25,000
✔

8B-No-S Llama-3.1
8B-
Instruct (Meta)

✔ 25 K highest
difficulty

✔

N = 25,000
✔

N = 25,000
✔

N = 25,000
✔

N = 25,000

8B-
NB-Only

Llama-3.1
8B-
Instruct (Meta)

✔ 25 K highest
difficulty

✔

N = 25,000
✔

N = 25,000
✔

3B-
Instruct

Llama-3.2
3B-
Instruct (Meta)

✔ ✔ ✔ ✔ ✔

3B-All Llama-3.2
3B-
Instruct (Meta)

✔ All ✔

N = 212,132
✔

N = 209,637
✔

N = 106,288
✔

N = 106,245
✔

1B-
Instruct

Llama-3.2
1B-
Instruct (Meta)

✔ ✔ ✔ ✔ ✔

1B-All Llama-3.2
1B-
Instruct (Meta)

✔ All ✔

N = 212,132
✔

N = 209,637
✔

N = 106,288
✔

N = 106,245
✔
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generation for clinical information extraction model fine-tuning as well as
the annotation tool which allowed for faster manual review of LLM pre-
annotated notes, and (b) datasets - two manually annotated datasets
(Annotated Synthetic Trial Criteria Questions and Apixaban Trial Criteria
Questions) which will allow for researchers to evaluate future methods for
clinical information extraction.

The use of LLMs to extract information from clinical notes has already
demonstrated the potential to improve upon traditionalmethods relying on
rule-based methods or extensive manual annotation. While proprietary
models, such asGPT-3 andGPT-4, have shown strong performance for this
purpose, their deployment in healthcare settings can be limited by com-
putational costs and licensing barriers35. Our findings align with recent
research suggesting thatfine-tuningopen-sourcemodelswith synthetic data
can improve their performance across clinical information extraction tasks,
bringing it closer to that of proprietary models36. By generating synthetic
data, this approach also reduces reliance on manually labeled data. Our
findings also align with those of concurrent work exploring the utility of
synthetic data distillation using Llama-3.1-405B-Instruct as a teacher
model24. The use of larger teacher models such as the 405B-Instruct poses a
challenge in terms of necessary computational requirements, particularly in
academic or resource-constrained settings. We find that the smaller 70B-
Instruct can successfully be used as a teacher model for distillation. The use
of smaller, open-source models that can perform well opens the door for
broader adoption of LLMs in healthcare settings in a cost-effective and
privacy-compliant manner. The reduced computational requirements of

these smaller models can make them more accessible to hospitals with
limited healthcare IT infrastructure. Another advantage of this approach is
the adaptability, as smallermodels can be better tailored to the specific needs
of individual hospitals. As resource-efficient LLMs continue to evolve, this
approach enables rapid (e.g., <12 hours on 8 gpus) finetuning45.

Our work focuses specifically on clinical trial eligibility criteria as an
evaluation task because these criteria are well-defined, but our proposed
framework is more broadly adaptable and could be applied to other areas
including cohort identification, patient phenotyping, or feature extraction.
Manyobservational and retrospective studies have specific inclusion criteria
that currently require some form of manual chart review. A solution that
works for clinical trials would also apply in these settings. The goal of this
work is to bring us closer to minimizing the need for manual chart review
and annotation. Thefinetunedmodelswe developed in this studywould not
be able to finalize candidate selection on their own but could be used to
screen a large number of candidates, narrowing an initial set down to a
smaller pool of patients much more likely to qualify. Manual review would
only need to be performed on the smaller pool, allowing medical profes-
sionals to avoid having to look at amajority of the records. Recent work has
explored information extraction tasks with minimal human oversight or
annotations46, but a significant amount of work remains to be done before
models could be accurate enough to perform the entire screening process
without human oversight.

By enabling scalable information extraction from unstructured notes,
this approach presents a promising opportunity for retrospective research

Table 2 | Model Accuracy on a subset of manually annotated Synthetic Labels (70B)

Accuracy Reported by Question Type

NA – Boolean (N = 241) NA – Numeric (N = 232) Numeric (N = 236) Boolean (N = 291) All Questions (N = 1000)

70B-Instruct 69.5% (63.5%, 75.1%) 81.8% (76.7%, 86.6%) 61.7% (55.5%, 67.8%) 88.6% (84.9%, 92.1%) 76.1% (65.6%, 85.6%)

8B-Instruct 27.7% (21.6%, 33.6%) 78.4% (73.3%, 83.2%) 79.2% (74.2%, 84.3%) 87.3% (83.5%, 91.1%) 68.4% (42.9%, 85.0%)

8B-All 88.0% (83.8%, 91.7%) 98.3% (96.6%, 99.6%) 83.9% (78.8%, 88.1%) 84.7% (80.8%, 88.7%) 89.1% (84.3%, 95.4%)

8B-H-25k 80.4% (74.9%, 86.1%) 85.5% (80.6%, 90.1%) 84.2% (79.2%, 88.6%) 88.0% (84.2%, 91.1%) 84.60% (79.9%, 90.3%)

8B-No-S 78.9% (73.8%, 83.8%) 89.3% (85.3%, 93.1%) 80.6% (75.4%, 85.2%) 83.5% (79.4%, 88.0%) 83.0% (79.7%, 87.1%)

8B-NB-Only 0.0% (0.0%, 0.0%) 40.0% (33.6%, 46.6%) 84.4% (79.2%, 88.6%) 87.6% (83.5%, 91.1%) 54.0% (22.2%, 87.0%)

3B-Instruct 87.7% (83.8%, 91.7%) 74.1% (68.5%, 79.7%) 66.0% (60.2%, 72.0%) 57.0% (50.9%, 62.5%) 71.1% (61.2%, 80.9%)

3B-All 85.1% (80.5%, 89.2%) 99.2% (97.8%,100.0%) 77.9% (72.5%, 83.1%) 85.2% (81.4%, 89.3%) 86.7% (79.7%, 95.6%)

1B-Instruct 21.0% (16.2%, 26.6%) 29.1% (23.3%, 35.3%) 17.1% (12.7%, 22.0%) 55.7% (49.8%, 60.8%) 31.0% (19.1%, 47.0%)

1B-All 93.0% (89.6%, 95.9%) 99.2% (97.8%, 100.0%) 40.2% (34.3%, 46.6%) 53.6% (47.8%, 59.5%) 71.2% (46.9%, 96.1%)

Reported values include the mean accuracy and 95% CI.

Table 3 |Comparisonbetweendirectly answeringclinical trial criteria about laboratory value ranges vs. extractinganumber and
applying rules-based post processing to determine whether to answer “yes” or “no” (i.e., ask the model to return a number, if
that number is above a range answer yes, otherwise answer no)

Criterion Title PromptType Prompt Question Extracted Value
Processing

Performance

Balanced Accuracy Micro-F1

70B 8B 8B-All 70B 8B 8B-All

Creatinine Numeric What was the patient’s highest recorded creatinine level?
Answer NA if there are no values.

<= 1.3: No
> 1.3: Yes
(Does not account
for Sex)

0.893 0.870 0.894 0.878 0.844 0.899

Boolean Has the patient ever had a serum creatinine level above
the upper normal limit? (Typically > 1.3 mg/dL formenand
1.1 mg/dL for women).

None 0.825 0.763 0.819 0.788 0.715 0.791

HbA1c Numeric What was the patient’s highest recorded hemoglobin A1c
(HbA1c) value? Answer NA if there are no values.

>= 6.5: Yes
Else: No

0.949 0.783 0.896 0.937 0.729 0.875

Boolean Has the patient ever had a hemoglobin A1c (HbA1c) level
between 6.5 and 9.5 inclusive?

None 0.774 0.583 0.743 0.774 0.462 0.760
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Table 4 | Performance on clinical trial eligibility criteria for apixaban

Balanced Accuracy

Criterion 70B-Instruct 8B-Instruct 8B-All 8B-H-25k 3B-Instruct 3B-All 1B-Instruct 1B-All

AST 97.0% 54.0% 94.3% 99.4% 48.0% 98.5% 30.0% 91.7%

Bilirubin 99.0% 100.0% 100.0% 99.3% 50.0% 100.0% 32.0% 91.9%

Creatinine 80.0% 85.0% 84.0% 85.0% 52.0% 86.0% 3.0% 83.3%

Hemoglobin 90.0% 96.0% 98.0% 96.0% 49.0% 98.5% 1.0% 91.4%

Platelets 87.0% 78.0% 79.6% 79.1% 75.0% 82.0% 36.4% 37.8%

AFib 81.7% 98.0% 98.0% 98.0% 81.2% 80.5% 29.0% 15.6%

Ablation for Afib 64.6% 89.5% 81.8% 98.0% 73.9% 85.2% 95.0% 100.0%

Arterial Hypertension 95.0% 99.4% 97.7% 97.1% 73.5% 90.9% 63.7% 58.5%

Bipolar Disorder 100.0% 100.0% 100.0% 100.0% 98.0% 99.7% 94.9% 100.0%

Bleeding 92.1% 91.6% 89.4% 80.0% 91.2% 61.8% 80.2% 37.8%

Blood Glucose 84.0% 25.0% 98.5% 94.0% 58.2% 93.0% 18.0% 81.8%

Chads2 94.0% 89.0% 94.9% 97.6% 53.7% 97.7% 80.0% 94.8%

Heart Failure 98.0% 96.5% 98.2% 99.0% 95.0% 98.0% 75.9% 94.0%

Hemorrhagic Tendencies 62.7% 60.3% 85.6% 96.1% 91.4% 82.0% 79.5% 80.7%

Left ventricular ejection
fraction

90.0% 72.0% 94.9% 96.0% 67.0% 91.8% 49.5% 57.0%

Depression 95.3% 100.0% 98.7% 97.5% 91.8% 93.1% 77.1% 71.4%

Makes Medical decisions 81.4% 79.5% 95.3% 93.4% 79.4% 94.9% 43.8% 87.8%

Peptic Ulcer Disease 99.5% 75.0% 92.9% 99.5% 81.3% 92.5% 46.9% 98.9%

Prior Stroke 86.2% 81.7% 88.5% 89.2% 97.1% 95.6% 79.6% 88.3%

Recent Stroke 94.2% 75.3% 94.2% 94.2% 91.1% 96.2% 82.8% 78.7%

Schizophrenia 100.0% 100.0% 100.0% 100.0% 99.5% 100.0% 48.9% 100.0%

Valvular Disease requiring
Surgery

83.9% 87.2% 86.8% 86.8% 70.4% 88.7% 45.4% 90.7%

Diabetes 82.2% 98.3% 99.1% 98.3% 91.8% 100.0% 77.7% 77.4%

Average 88.7% 84.0% 93.5% 94.2% 73.9% 91.9% 55.0% 78.4%

95% C.I. (84.3%,
92.6%)

(75.9%,
90.5%)

(90.9%,
96.1%)

(90.9%,
96.9%)

(66.7%,
81.1%)

(87.5%,
95.4%)

(44.1%,
66.1%)

(69.7%,
86.0%)

Micro-F1

AST 0.97 0.54 0.94 0.99 0.48 0.99 0.30 0.92

Bilirubin 0.99 1.00 1.00 0.99 0.50 1.00 0.32 0.92

Creatinine 0.80 0.85 0.84 0.85 0.52 0.86 0.03 0.83

Hemoglobin 0.90 0.96 0.98 0.96 0.49 0.98 0.01 0.91

Platelets 0.87 0.75 0.80 0.81 0.75 0.82 0.36 0.38

AFib 0.84 0.97 0.97 0.97 0.84 0.80 0.29 0.16

Ablation for Afib 0.94 0.98 0.96 0.96 0.95 0.93 0.95 1.00

Arterial Hypertension 0.98 0.99 0.96 0.95 0.81 0.96 0.82 0.31

Bipolar Disorder 1.00 1.00 1.00 1.00 0.96 0.99 0.95 1.00

Bleeding 0.85 0.91 0.89 0.80 0.83 0.62 0.80 0.38

Blood Glucose 0.84 0.25 0.98 0.94 0.58 0.93 0.18 0.82

Chads2 0.94 0.89 0.95 0.98 0.54 0.98 0.80 0.95

Heart Failure 0.98 0.96 0.98 0.99 0.95 0.98 0.56 0.95

Hemorrhagic Tendencies 0.78 0.52 0.89 0.92 0.83 0.82 0.84 0.81

Left ventricular ejection
fraction

0.90 0.72 0.95 0.96 0.67 0.92 0.49 0.57

Depression 0.92 1.00 0.98 0.96 0.85 0.97 0.77 0.88

Makes Medical decisions 0.90 0.91 0.91 0.93 0.91 0.90 0.87 0.88

Peptic Ulcer Disease 0.99 0.94 0.99 0.99 0.95 0.98 0.93 0.98

Prior Stroke 0.92 0.89 0.94 0.94 0.95 0.97 0.80 0.79

Recent Stroke 0.89 0.86 0.89 0.89 0.92 0.93 0.83 0.79

Schizophrenia 1.00 1.00 1.00 1.00 0.99 1.00 0.97 1.00
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through its potential impact on enhancing patient phenotyping. This is
particularly important when studying complex and heterogeneous patient
populations, where phenotyping approaches relying solely on structured
data, such as ICD codes, fall short. Better phenotyping can result in
improved quality and relevance of retrospective studies.

While this has exciting potential, we also note some of the limitations
and challenges identified through manual review of the synthetic data
generated by Llama-3.1-70B-Instruct that may begin to elucidate failure
modes for these models. In general, the model struggled with ranges when
forming numeric questions. In multiple instances, a range (e.g., 60-70%)
would be collapsed to one of its limits (60% or 70%) in a numerical answer.
In at least one instance, the model had difficulty comparing a range and a
given value outside that range (e.g., concluding that >70% precludes 50%).
This contrasts with the model’s generally consistent ability to locate the
highest or lowest value in a sequence of measurements (e.g., finding the
highest blood pressure recorded in a note containing multiple readings).
Numeric ranges of values are a known area of difficulty for model
reasoning47. Hager et al. explicitly provided example lab results along with
reference ranges for those labs and askedmultiple LLM’s to determine if the
result fell below, within, or above the range; they concluded that “all LLMs
performedvery poorly”48. To avoid having themodel reason about ranges of
values, questions could be reworded to ask themodel to return the patient’s

measurement for a givenmetric, and then evaluate if thatmeasurement falls
within a certain reference range as a separate step (as in Table 3). For ranges
of values that appear within notes, separate questions could be used to
determine the maximum and minimum estimated values.

The model also sometimes struggled with redacted data and
contextual understanding. In one instance, the model identified
numbers in a redaction tag as the answer to a question. This tag
would have contained the correct answer prior to redaction. The tag
itself, “[**3-22**]”, contained numbers, and this may have con-
tributed to the model’s confusion. Non-numerical redaction tokens
may help to alleviate this sort of issue. Additionally, token repre-
sentation should be taken into account when deciding how to include
redactions, as the existing format generates several extra tokens per
redaction requiring greater context size. In another example, the
model successfully identified the inappropriately partially-redacted
“[churgg [**Doctor Last Name **] disease” as Churg-Strauss disease.
In another case, the model correctly identified a patient’s hemoglobin
value but then incorrectly concluded that it fell below the normal
range. This conclusion would have been correct had the patient been
male; however, the patient was female, and the reference range is
lower for females. In another case, the model asked if a female over
70 was “a candidate for future pregnancy?” Interestingly, the model

Table 4 (continued) | Performance on clinical trial eligibility criteria for apixaban

Balanced Accuracy

Criterion 70B-Instruct 8B-Instruct 8B-All 8B-H-25k 3B-Instruct 3B-All 1B-Instruct 1B-All

Valvular Disease requiring
Surgery

0.92 0.95 0.93 0.93 0.90 0.93 0.90 0.85

Diabetes 1.00 0.97 0.99 0.98 0.89 1.00 0.56 0.59

Average 0.90 0.86 0.95 0.94 0.76 0.93 0.62 0.78

95% C.I. (0.873, 0.934) (0.783, 0.934) (0.920, 0.966) (0.912, 0.971) (0.677, 0.828) (0.885, 0.963) (0.484, 0.741) (0.678, 0.857)

Columns are grouped by model size. Blue color indicates models that received fine-tuning

a b c

Fig. 3 | Comparison of inference speed across model sizes and evaluation tasks.
a illustrates the average number of seconds needed to process an example for each
dataset and model, b shows the average number of tokens read or ingested per

second, and (c) depicts the average number of tokens generated per second. When
comparing the center and right panels, note that token generation tends to be more
time-consuming than token ingestion.
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was also able to identify and parse a fishbone diagram within a note,
correctly answering questions about lab values contained within the
diagram.

Themodel also sometimes lacked creativitywhen generating questions
with unspecified answers. To generate questions that could not be answered
using the contents of a note, the model seemed to commonly inquire about
BMI (height and weight measurements are recorded separately from these
notes and so are often not contained in the text) and the results from a
6-minute walking test (6MWT). In the full test set containing 42,498
instances, we found 997 questions related to BMI (98.7% of which resolved
n/a) and 666 questions related to a 6-minute walk test (all of which resolved
n/a). Themodelwould also ask aboutmeasurements from a patient prior to
them seeking medical attention, which are typically unavailable in these
notes. Additionally, the models would sometimes struggle with repetitive
generation. In the test set, we found 1,676 (3.94%) questions containing
“creatinine”. Admittedly, our prompt for numeric type questions included
an example “What was the patient’s highest creatinine measurement
recorded in the note?”However, amajority (1151) of these questionswere of
na-numeric, boolean, or na-boolean type, and none of those prompts
mention creatinine. Future work could potentially introduce a mechanism
to deprioritize questions that are highly repetitive or likely to yield non-
informative answers. With the development of models that support longer
context windows, it is possible to keep track of previously generated
question-answer pairs and use this to avoid redundancy during question
generation. Retrieval-augmented generation (RAG), which combines LLMs
with knowledge from external sources49,50, could also be incorporated into
the question generation process. For example, it could be used to retrieve
data (including lab values, medications, and diagnoses) and use this infor-
mation to generate question-answer pairs more relevant to the recorded
information. This could reduce the risk of generating unanswerable ques-
tions like those about BMI when height and weight aremissing. RAG could
also use information from other external sources including notes and
question-answer pairs from other similar patients or clinical knowledge
bases to help guide toward more diverse and contextually appropriate
question generation.

We found that carefully worded prompts could help to avoid some of
the incorrectmodel outputs described in the previous section. By rewording
questions,we coulddeter themodel fromdrawing inferences andobtain less
ambiguous question-answer pairs. For questions that asked if a patient had a
history of X, where X was not mentioned in the note, the model would
sometimes conclude that a patient did not have a history of X because Xwas
notmentioned in the note, and other times conclude that the question could
not be definitively answered from the contents of the note. This ambiguity
could be resolved bymodifying the question to ask if a patient’s history of X
could be found in the note. This is especially critical because it allows us to
use a combination of clinical expertise and post-processing to knowingly
make assumptions where appropriate about whether X would have been in
the note if they had it, as opposed to the model making this assumption for
us without our knowledge. We observed in multiple evaluations that per-
formance is substantially higher when asking the model to answer single-
order questions (e.g., what was the patient’s highest creatinine value?) as
opposed to questions which require multiple steps (e.g., does this patient fit
this trial’s eligibility criteria?). In future work, we will determine if chain-of-
thought prompting51 or multi-step inference52 can circumvent the need for
manual postprocessing.

Developing resource-efficient LLMs to extract relevant information
from clinical notes is a rapidly advancing discipline with many open
questions. For example, there may be better ways to make the distillation
process more data-efficient. In this work, we showed how fine-tuning on
only a fraction of the synthetic dataset (e.g., 8B-H-25k) still appreciably
enhances the base 8B-Instructmodel. Different criteria for selecting a subset
of the fine-tuning data may better maintain performance while decreasing
data requirements53,54. Ordering the fine-tuning set by increasing difficulty
and interleaving question types may also help55.

Future work could consider whether a metric besides micro-F1 could
better characterize good performance. We used micro-F1 in part because it
benchmarked the original i2b2 challenge. However, some researchers view
patient-clinical trial matching as a ranking problem and consequently
report metrics like normalized discounted cumulative gain at k and preci-
sion at k35,36.We could also consider the optimal way to handle ambiguity in
notes. Unlike tabular or structured data that typically complies with a strict
format, notes often include estimates and conjectures, especially when
discussing medical history. There are often question marks next to past
diagnoses and values reported. Another potentially interesting extension of
this work could look into how data frommultiple notes could be combined.
Many people have amedical history spanning decades. For selection criteria
involving disease progression or patient history, multiple notes may be
required to obtain a complete answer. Combining records in a time-aware
manner remains an open problem.

In this study, we use synthetic data for its capacity to enhance datasets
for distillation. We also note additional considerations that come with
synthetic data use. While synthetic data is often used as a more privacy-
protecting alternative to real data, it is important to consider how synthetic
datasets are generated and their regulatory compliance56. For example, the
European Union’s General Data Protection Regulation (GDPR) requires
that generated data cannot be used to re-identify any individuals57. An
additional consideration for synthetic data use is the potential for IP
contamination58. By using open-source models in this study, we minimize
the risk of IP contamination compared to alternatives using proprietary
models.

It is also important to note the potential issues of representativeness
and biases when using synthetic data. Representational biases introduced
through the synthetic generation process have the potential to be exacer-
bated if the synthetic data does not accurately represent the patient
population59. We use real-world data from the i2b2 n2c2 2018 challenge44

which was derived from Partners Health (nowMass General Brigham) and
MIMIC, derived from Beth Israel. Evaluation in real-world data may avoid
some of the potential bias exacerbation concern from synthetic data, but
these datasets are both from health systems in Boston and may lack a
population with sufficient representation to ensure generalization. Unfor-
tunately, the barriers to releasing clinical notes in public or gated systems
limit the datasets researchers have access to. In future studies, we aim to
perform evaluation in additional real-world datasets from diverse health
systems to work toward better generalizability and portability. We also aim
to explore additional bias mitigation strategies that can intervene at various
stages of the LLM workflow60. For example, prior knowledge distillation
work has used data filtering and reweighting to produce more equitable
teacher outputs61–63. The teacher’s predicted token probabilities can be
reweighted before being passed to the student model to reduce the inheri-
tance or amplification of bias in the student model. Data augmentation
techniques, such as data balancing64–66, selective replacement67,68, or
interpolation69,70 can also mitigate bias through the addition of training
examples that may otherwise be underrepresented. RAG has also been
explored for its potential to address biases in generative AI for health care
through retrieving more inclusive or population-specific information (for
example, gender-based reference ranges) to help generate more repre-
sentative outputs71.

Synthetic data distillation and fine-tuning of smaller, open-source
LLMs that can be locally deployed within existing healthcare IT infra-
structures can serve as a scalable alternative to more resource-intensive,
proprietary models for clinical information extraction. The ability for
scalable extraction of information from unstructured clinical notes allows
for broader adoption indiverse healthcare systemsettings,with thepotential
to strengthen retrospective research by enabling more precise and
accurate phenotyping. This work contributes to efforts to support the
effective and practical integration of LLMs in healthcare settings,
with the ultimate goal of supporting medical research to improve
patient outcomes.
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Methods
In this section, we describe our knowledge distillation process which uses a
large model, Llama-3.1-70B-Instruct, to generate training examples for the
smaller model, Llama-3.1-8B-Instruct (or Llama-3.2-3B-Instruct or Llama-
3.2-1B-Instruct; Fig. 1). We chose the Llama family of models over other
open-source alternatives due to both their benchmarked performance
metrics72 and the extent to which they have been integrated into software
frameworks for finetuning and inference. Additionally, the QLoRA fine-
tuning method37 that we describe in subsection 4 was originally tested with
the Llama family of models.

Synthetic data generation
For each patient record, we used Llama-3.1-70B-Instruct72 to generate dif-
ferent, patient note-specific questions similar to clinical trial eligibility cri-
teria of a given type (Supplementary Table 1). We prompted the model to
supply its answers in json format. Each JSON includes the following: (1) the
question; (2) the question type; (3) the answer, (4) the section of the note
containing the answer (e.g., Past Medical History, Plan, etc.); (5) the ver-
batim source of the answer from the clinical note; (6) a difficulty level for the
question on a scale of 1-10; and (7) an explanation justifying the answer
choice, including how the source helped to answer the question.

We included the following question types: “boolean” (answer “Yes” or
“No”), “numeric”, “na-boolean”, and “na-numeric”, where the “na” types
corresponded to questions that could not be answered relying on the
information in the note but seemed like they would be applicable to this
patient and are similar to clinical trial eligibility criteria. For “na” type
questions, we stipulated the section to be “Not Found” and the source was
“Not in Note.” The purpose of the “na” types as well as the supporting data,
was to try to teach the model not to provide seemingly confident answers
(i.e., hallucinations) when there doesn’t exist sufficient evidence in the note
to draw a conclusion. We provide example questions of each type (Sup-
plementary Table 6) as well as a specific example supplied in the prompt to
demonstrate the specific language used to generate each question type
(Supplementary Table 1).

We generated 212,132 boolean question and answer (Q&A) pairings,
209,637 numeric Q&A pairings, 106,288 “na-boolean” Q&A pairings, and
106,245 “na-numeric”Q&A pairings. The number of questions arose from
running the synthetic data generation process on 10,000 discharge sum-
maries, where the model was asked to generate 20 boolean questions (10
with yes as the answer and10withno), 20 numeric questions, and 10of each
“na” category. Themodel tended toprovide slightlymore than the requested
number of questions per note. The number of questions of each type per
difficulty score assigned by Llama-3.1-70B are described in the supplement
(Supplementary Table 2).

Data programming
For each question type, we select the 25,000 most difficult questions
according to the LLM-estimated difficulty rating and randomly split
them into a training and test set at a 90–10% ratio. We perform post-
processing to extract our requests from the JSON response and
handle malformed JSON outputs. The datasets are randomly shuffled
prior to fine-tuning.

Limited human review
To ensure data quality for the fine-tuning process, we manually
reviewed a random sample containing 1000 questions generated by
Llama-3.1-70B-Instruct. For this purpose, we developed an open-
source tool that facilitates record review from within a web browser
(https://github.com/bbj-lab/annotation-ui). Users with minimal
technical experience can check patient records against the generated
question-answer pairs and refine answers if needed. Statistics about
the number of questions that required refinement are available in the
supplement (Supplementary Table 1). Manual review allowed us to
both profile the accuracy of the synthetic data generation process and
to better understand common failure modes.

QLoRAfine-tuning. After data programming and limited human review,
we used the refined synthetic dataset to perform supervised fine-tuning
on an instance of Llama-3.1-8B72. Specifically, we fine-tuned with
QLoRA37, a quantized version of Low-RankAdaptation (LoRA: 73). LoRA
fine-tunes the attention weights in a pre-trained transformer with a low-
rank update (a d×k matrix BA, where B is d×r and A is r×k where
r≪min{d,k}) that significantly reduces the number of required para-
meters and does not add to inference latency. QLoRA operates on a
quantized transformer, i.e., one that uses 4-bit as opposed to 16-bit
parameters, to further reduce memory requirements and uses paged
optimizers thatmanage the exchange ofmemory betweenGPU andCPU
components.

Inference - Sampling hyperparameter selection
During generation, we tested different values of temperature and top_p
(specifically temperatures of 0 and 1 and top_p of 0.5 and 0.95). Tem-
perature controls the randomness of sampling, with higher temperatures
corresponding to more novelty in generated output. However, increasing
temperature may also make text less coherent and hallucinations more
likely.Consequently, higher valuesof temperature are oftenused for creative
tasks,while lower values areused fordialoguing aboutmatters of fact. Chang
et al.74 hypothesized that lower values of temperaturemay be better suited to
question-answering with attribution. However, Renze and Guven’s recent
work75 indicates that LLM problem-solving performance does not sig-
nificantly vary for temperature values between 0 and 1. The top_p para-
meter controls nuclear sampling76, with higher values corresponding to a
more permissive threshold for filtering.

Setting temperature = 0 and top_p = 1 results in a nearly deterministic,
greedy sampling strategy that aims to select the most likely token given the
current context. Setting temperature = 1 and top_p = 0.5 restricts tokens to
come from a likely subset of the token set, but otherwise samples according
to the predicted odds. We limit this parameter evaluation to the i2b2 n2c2
challenge and report the full results for all parameters (Supplementary
Table 3). Because we did not see a benefit when increasing the temperature
we fixed temperature = 0 and top_p = 1 for all other evaluations.

Versions of Fine-tuned Models
The following models resulted from finetuning Llama-3.1-8B-Instruct
released by Meta as the base model (Ablation study on fine-tuning data
selection - Table 1):
a. All (Labeled 8B-All). Fine-tuning was performed with the complete

dataset, using question, answer, question type, section, source, and
explanation as described in the methods.

b. Hardest (Labeled 8B-H-25k). To determine the performance impact of
reducing training set size, we selected the 25,000 questions the model
determined had the highest difficulty in Step #1 (Synthetic Data Gen-
eration) for each question type. This subset of the original training data
was then used to fine-tune the model.

c. Hardest Boolean and Numeric (Labeled 8B-NB-Only). To determine
the impact that n/a questions have on model fine tuning, we selected
the most difficult 25,000 questions for only the boolean and numeric
types (dropping “na-boolean” and “na-numeric”) from the original
dataset for fine-tuning.

d. No Support (Labeled 8B-No-S). To determine the usefulness of
including textual references and an explanation of the correct answer,
we dropped the section, source, and explanation from the original
training set and fine-tuned the model with this data.

We also fine-tuned smaller versions of Llama-3.2 released by Meta:
a. All (Labeled 3B-All). Finetuning was performed using the complete

dataset (as with 8B-All), except with Llama-3.2-3B-Instruct as the
base model.

b. All (Labeled 1B-All). Finetuning was performed using the complete
dataset (as with 8B-All), except with Llama-3.2-1B-Instruct as the
base model.
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Model evaluation
We took the models finetuned on synthetic training data and evaluated
them on three separate datasets, including one synthetic dataset and two
real-world datasets, as follows:

First, we evaluate methods on a held-out set of 42,498 synthetic
examples generated in an identical manner to the dataset used for fine-
tuning. The breakdown of examples by type was as follows: 10,722 (25.2%)
boolean, 10,666 (25.1%) numeric, 10,664 (25.1%) na-boolean, and 10,446
(24.6%) na-numeric. From this set, we drew a random sample containing
1000 examples and manually annotated it as described in the “Limited
Human Review” subsection of our methods, correcting questions, answers,
and explanations when necessary. We calculated the accuracy for these
questions, as given in the results section. We provided a summary of this
dataset (Supplementary Table 1) and have released a copy of it on Physi-
oNet.Results for this datasetallowus to evaluate the extent towhich thefine-
tuning objective was successfully optimized. The next two subsections
describe tests on real-world data.

Next, we evaluate methods on the clinical trial eligibility criteria
cohort selection shared task from the i2b2 2018 National NLP
Clinical Challenges (n2c2)44. Track 1 contains 288 de-identified
longitudinal medical records for patients with diabetes, many of
whom are at risk for heart disease. The records are manually anno-
tated according to 13 selection criteria adapted from real clinical
trials and split into a 202-patient training set and an 86-patient test
set. We calculated balanced accuracy and micro-F1 score on both the
training and test datasets corresponding to the original challenge. At
the time of the challenge, the top-performing team adopted a rule-
based method to obtain a micro-F1 score of 0.91 on the test set. Other
teams achieved similar results (F1 > 0.9) with hybrid approaches; for
example, cTakes77 was used by 3 of the top 5 teams to extract
knowledge from the text. Because we only use this dataset to test
zero-shot extraction and do not train on it, we are able to evaluate the
model performance on both the training and test sets to have a larger
sample size.

We also evaluatemethods on clinical trial eligibility criteria resembling
those of the 2011 ARISTOTLE clinical trial comparing apixaban to
warfarin42. We developed 23 human-generated boolean and numeric
questions assessing these criteria (Supplementary Table 4). Using these
questions, we manually annotated notes for 2300 total question-answer
pairs within MIMIC-IV78,79. Notes from MIMIC-IV were taken from after
2012 to ensure no overlap with any of the notes from MIMIC-III, which
were used to generate synthetic data. We evaluated the models on these
question-answer pairs and calculated both balanced accuracy andmicro-F1
score. We are releasing the dataset and manual annotations to PhysioNet
and will make them available under the same data use terms as MIMIC-
III/IV.

Data availability
The MIMIC-III [Johnson, et al., 2016] and MIMIC-IV [Johnson, et al.,
2023] datasets are available from PhysioNet. The datasets of the Annotated
Synthetic Questions and the Apixaban Trial Criteria Questionsare are
available from physionet: https://physionet.org/content/mimic-iv-ext-
apixaban-trial/1.0.0/; https://physionet.org/content/mimic-ext-synth-trial-
question/1.0.0/.

Code availability
Source code for clinical information extraction and synthetic data gen-
eration can be accessed at https://github.com/bbj-lab/clinical-synthetic-
data-distil. Source code for the annotation tool, when LLM predicted
annotations are already available, is available at https://github.com/bbj-
lab/annotation-ui.
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