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Abstract

Deep learning-based electrocardiogram (ECG) classification has shown impressive perfor-
mance but clinical adoption has been slowed by the lack of transparent and faithful expla-
nations. Post hoc methods such as saliency maps may fail to reflect a model’s true decision
process. Prototype-based reasoning offers a more transparent alternative by grounding
decisions in similarity to learned representations of real ECG segments—enabling faithful,
case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning
model for interpretable, multi-label ECG classification. ProtoECGNet employs a struc-
tured, multi-branch architecture that reflects clinical interpretation workflows: it integrates
a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized
prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for
diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-
label learning, combining clustering, separation, diversity, and a novel contrastive loss that
encourages appropriate separation between prototypes of unrelated classes while allowing
clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diag-
nostic labels from the PTB-XL dataset, demonstrating competitive performance relative to
state-of-the-art black-box models while providing structured, case-based explanations. To
assess prototype quality, we conduct a structured clinician review of the final model’s pro-
jected prototypes, finding that they are rated as representative and clear. ProtoECGNet
shows that prototype learning can be effectively scaled to complex, multi-label time-series
classification, offering a practical path toward transparent and trustworthy deep learning
models for clinical decision support.

© S. Sethi, D. Chen, T. Statchen, M.C. Burkhart, N. Bhandari, B. Ramadan & B. Beaulieu-Jones.
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ProtoECGNet

1. Introduction

Deep learning (DL) has achieved strong performance across a wide range of diagnostic and
predictive tasks in medicine. (Aggarwal et al., 2021; Petmezas et al., 2022; Khera et al.,
2024; Oliveira et al., 2023; Barnes et al., 2023; Sethi et al., 2025; Sun et al., 2021). In
cardiology, DL-based electrocardiogram (ECG) interpretation is of great interest because
ECGs are central to diagnosing many diseases like arrhythmias, myocardial infarction, and
structural heart disease (Carrington et al., 2022; Birnbaum et al., 2014). DL models have
demonstrated strong, and in some cases, cardiologist-level performance in ECG classification
(Hannun et al., 2019; Elias et al., 2022; He et al., 2023; Ouyang et al., 2024; Trivedi et al.,
2025; Yuan et al., 2023), but their clinical deployment would be accelerated with increased
transparency and trustworthiness in model predictions (Goettling et al., 2024). An example
of a blackbox prediction for an ECG with an anteroseptal myocardial infarction (ASMI) is
shown in Figure 1A.

Post hoc explainability methods—such as saliency maps and attention-based visual-
izations—are commonly used to interpret black-box deep learning models (Rudin, 2019;
Adebayo et al., 2020). However, these methods generate outputs that are not necessarily
aligned with the model’s decision process. Prior studies have shown that saliency maps can
be unstable, non-reproducible, and misaligned with human reasoning, particularly in med-
ical domains (Adebayo et al., 2020; Alvarez-Melis and Jaakkola, 2018; Turbé et al., 2023).
Most importantly, simply highlighting the parts of an ECG the model focused on is not
the same as explaining why it made a specific diagnosis—as illustrated in Figure 1B. These
limitations have led to growing interest in self-explaining models, where interpretability is
embedded directly into the model architecture (Rudin, 2019; Tonekaboni et al., 2019).

Prototype-based models classify inputs by comparing them to a small set of learned,
class-associated vectors called prototypes, each of which represents a localized region in the
model’s latent space. During inference, predictions are based on the similarity between an
input and these prototypes—effectively grounding decisions in similarity to learned rep-
resentative examples from the training set. This allows the model to produce case-based
explanations that are inherently faithful to its internal decision process (see Figure 1C). Un-
like saliency methods, prototype networks explicitly learn and are forced to use interpretable
exemplars as part of their classification pipeline. However, existing prototype-based mod-
els for ECG interpretation have been limited in scope. Prior work has focused primarily
on single-label rhythm classification tasks and used only single- or dual-lead signals (Ming
et al., 2019; Xie et al., 2024). These approaches do not address the complexity of large-scale,
multi-label ECG classification, where numerous cardiac abnormalities frequently co-occur
and require diverse forms of temporal and spatial reasoning.

In this work, we introduce ProtoECGNet, a prototype-based deep learning architec-
ture for interpretable, multi-label ECG classification. ProtoECGNet is designed to mirror
the reasoning processes used by clinicians during ECG interpretation, combining multiple
prototype types aligned with temporal and spatial diagnostic patterns. Our approach en-
ables structured, case-based explanations without sacrificing predictive performance, even
in large-scale, multi-label classification tasks. Our key contributions include:

1. A customized prototype loss for multi-label ECG classification. We build
upon prior prototype learning objectives (Barnett et al., 2024; Wang et al., 2021),
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Figure 1: Illustration of interpretability approaches for ECG classification. (A) Black-box
models such as convolutional neural networks (CNNs) can achieve strong performance on
diagnostic tasks, but provide no inherent explanation for their predictions. (B) Post hoc ex-
plainability methods, such as saliency maps, attempt to highlight input regions deemed im-
portant by the model after a prediction is made. However, these visualizations are not part
of the model’s decision process and often fail to provide a meaningful explanation—simply
indicating “where” the model looked does not explain “why” it made a decision. (C)
Prototype-based models offer a self-explaining alternative: predictions are made by com-
paring a test input to a set of learned prototype vectors, each anchored to a real ECG
segment. This enables case-based explanations that reflect the model’s actual classification
logic. ASMI = anteroseptal myocardial infarction.

modifying the loss formulation to better accommodate multi-label supervision. Specif-
ically, we retain and adapt the clustering and separation terms to account for label co-
occurrence, and introduce a novel contrastive loss designed for the multi-label proto-
type setting. Our contrastive loss encourages separation between prototypes assigned
to rarely co-occurring diagnoses, while allowing prototypes for frequently co-occurring
conditions to remain close in the latent space. This formulation structures the pro-
totype geometry to reflect empirical co-occurrence patterns observed in the training
data (e.g., Q-waves are a common co-occurrence across different forms of myocardial
infarction) and improves classification performance.

2. A multi-branch model architecture aligned with clinical reasoning. Pro-
toECGNet consists of three specialized prototype branches: (1) a 1D rhythm model
with global prototypes designed to capture long-range temporal patterns, (2) a 2D
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morphology model with time-localized prototypes that leverage inter-lead spatial struc-
ture to identify focal waveform abnormalities, and (3) a 2D global model with full-
duration, full-lead prototypes for detecting diffuse or distributed ECG abnormalities.
Each branch is trained independently on a disjoint subset of diagnostic labels, and
their outputs are either aggregated via macro-averaging or fused using a learned clas-
sifier trained to predict all 71 labels in the PTB-XL dataset.

3. Empirical evaluation of prototype quality by clinicians. To assess the inter-
pretability of the learned prototypes, we conducted a structured review in which two
physicians independently rate all projected prototypes from the final model on mul-
tiple quality criteria, including clarity and class representativeness. This evaluation
provides initial evidence that the model’s explanations align with clinical expectations.

Generalizable Insights about Machine Learning in the Context of Healthcare

We show that prototype-based interpretability depends on how prototypes are defined,
trained, and aligned with clinical reasoning. By organizing diagnostic labels into rhythm,
morphology, and global categories, and assigning each to a dedicated prototype branch,
ProtoECGNet reflects the structure of expert ECG interpretation and enables more domain-
tailored explanations. Further, we demonstrate that prototype learning can be extended
to multi-label tasks through careful loss design: our contrastive formulation allows the
model to preserve meaningful overlap between co-occurring diagnoses while maintaining
discriminative structure in the latent space. Unlike prior prototype models limited to narrow
single-label classification tasks, our approach supports full-spectrum ECG interpretation
across 71 diagnostic labels, producing real ECG segment–based explanations without relying
on post hoc methods. This shows that interpretable models can scale to realistic clinical
tasks when their architecture and objectives are designed with domain constraints in mind.

2. Related Work

2.1. Prototype-Based Learning

Prototype-based learning has emerged as a promising framework for interpretable machine
learning, particularly following the introduction of ProtoPNet (Chen et al., 2019). Sub-
sequent work has extended this paradigm in various directions: ProtoTree (Hase et al.,
2019) structured prototypes hierarchically; TesNet (Wang et al., 2021) mapped prototypes
to a hyperspherical latent space; ProtoPool (Rymarczyk et al., 2022) enabled soft sharing
of prototypes across classes; and ProtoConcepts (Ma et al., 2023) combined prototypes
with concept-based reasoning. These models have demonstrated interpretability benefits
in imaging tasks, including breast cancer classification (Barnett et al., 2021), brain tumor
detection (Wei et al., 2023), and chest X-ray analysis (Kim et al., 2021). However, most
of this literature assumes mutually exclusive class labels and focuses on static 2-D images,
limiting direct applicability to sequential medical data.

Prototype learning for time-series data remains underexplored. One adaptation to EEG
classification uses a 2D CNN-based prototype model, treating multichannel signals as im-
ages and validating interpretability through a structured clinician study (Barnett et al.,
2024). However, this approach used only global prototypes and addressed a single-label,
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multi-class classification task. Existing prototype-based ECG models, such as ProSeNet
(Ming et al., 2019) and PahNet (Xie et al., 2024), focus narrowly on rhythm detection us-
ing single- or dual-lead inputs, and neither supports multi-label classification. Moreover,
PahNet does not include a prototype projection mechanism, preventing alignment between
learned prototypes and real ECG segments—limiting its explanatory usefulness in clinical
settings.

The most closely related work is xECGArch (Goettling et al., 2024), which introduces
a dual-CNN model to separately capture short-term (morphological) and long-term (rhyth-
mic) patterns in ECGs. However, xECGArch does not project prototypes onto real ECG
segments and instead relies on post hoc saliency maps for interpretation, limiting its ability
to provide case-based explanations. It is also restricted to binary atrial fibrillation detection
using single-lead inputs. In contrast, ProtoECGNet is explicitly designed for multi-label,
12-lead ECG interpretation. It includes three clinically inspired prototype branches tai-
lored to rhythm, morphology, and global abnormalities, with each prototype anchored to a
real training segment for faithful explanation. The latent space is further structured using
a custom contrastive loss that reflects real-world label co-occurrence. Our work extends
prototype learning to a more complex and clinically realistic setting.

2.2. Contrastive Learning

While prototype learning offers an inherently interpretable model structure, it does not
ensure that the learned prototypes reflect meaningful diagnostic variation—particularly in
multi-label settings, where some conditions routinely co-occur. To address this, we introduce
a contrastive loss tailored to multi-label prototype learning, designed to shape the prototype
similarity space in alignment with label relationships observed in the training data.

Our approach is inspired by supervised contrastive learning, which has been widely used
to structure encoder representations. SupCon (Khosla et al., 2021) and SimCLR (Chen
et al., 2020) promote similarity among positive pairs and dissimilarity among negatives
using log-softmax objectives over large batches. Multi-label extensions, such as MulSupCon
(Zhang and Wu, 2024), weight similarity based on label overlap. However, these instance-
level methods are not applicable to our setting, where the goal is to organize a fixed set of
prototype vectors with known class assignments—not to embed unlabeled instances.

More relevant is the Joint Supervised Contrastive Loss (JSCL) proposed by Lin et al.
(2023), which introduces a contrastive loss for multi-label classification by encouraging
proximity between latent representations of examples with shared labels and pushing apart
those with disjoint labels. JSCL operates on input embeddings and uses a log-ratio formu-
lation. We adapt this idea for the prototype learning setting in two key ways. First, we
apply the loss directly to the prototype vectors in the latent space, leveraging their fixed
prototype-to-class assignments to define positive and negative pairs. Second, we replace
the log-ratio formulation with a mean-difference objective: the average similarity between
prototype pairs assigned to overlapping labels is contrasted against the average similarity
of those with disjoint label sets. This formulation is well-suited to our structured prototype
setting and encourages the latent space to reflect realistic co-occurrence patterns.
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3. Methods

3.1. Dataset and Label Grouping

We used the PTB-XL dataset, a publicly available collection of 21,799 10-second, 12-lead
ECGs from 18,869 patients sampled at both 500 Hz and 100 Hz (Wagner et al., 2020).
Each ECG was annotated with one or more of 71 SCP-ECG diagnostic labels spanning
arrhythmias, conduction disorders, infarction patterns, and morphological abnormalities.
We retained the original dataset split from Wagner et al. (2020)—using folds 1-8 for training
and fold 9 for validation. We reported performance metrics on fold 10, using it as a hold-
out test set. To align with the dataset’s benchmarks, the term-centric macro AUROC from
Strodthoff et al. (2021) was chosen as the primary performance metric. Appendix D details
how ECGs were visualized for figures and prototype review.

The dataset contains several label groupings (e.g., diagnostic superclasses), but these
were unsuitable for our desired training process. Consequently, two physicians—one board-
certified in cardiology and the other in internal medicine—grouped the 71 labels into three
clinically meaningful prototype categories based on the type of visual reasoning required
for diagnosis: (1) rhythm-based diagnoses—require temporal pattern analysis across
full-length ECG signals, often discernible from a single lead; (2) morphology-based di-
agnoses—require localized waveform shape or inter-lead comparisons over short time in-
tervals; (3) global diagnoses—require full-lead patterns spanning the full ECG duration.
In total, 16 diagnoses were grouped into the 1D rhythm branch, 52 into the 2D morphology
branch, and 3 into the 2D global branch. These groupings are detailed in Appendix G.

3.2. Preprocessing

As the lower end of the frequency range for a normal ECG is 0.5 Hz (Zheng et al., 2020),
we applied a first-order Butterworth high-pass filter with a 0.5 Hz cutoff. No low-pass filter
was applied, as we used the 100 Hz samples from the dataset.

3.3. Model Architecture

ProtoECGNet consisted of three independent prototype-based branches, each specialized
for a distinct type of ECG diagnostic reasoning: rhythm-based, morphology-based, and
global abnormalities (see Figure 2 and Figure 5). Each branch processed the same raw
12-lead ECG input of shape (12 × 1000) but applied a different label subset.

1D Rhythm Branch. This branch was designed to capture long-range temporal depen-
dencies characteristic of rhythm abnormalities. We adopted the ResNet1D-18 architecture
from Strodthoff et al. (2021), operating on input ECGs of shape (12 × 1000). The ar-
chitecture consisted of an initial strided convolution, followed by four residual blocks with
increasing channel depth. Feature maps were pooled with an adaptive average pooling layer
to produce fixed-length latent representations per lead. These representations formed the
prototype matching space for the 1D rhythm model.

2D Morphology Branch. To detect localized waveform abnormalities that depend on
spatial relationships across ECG leads—such as ST elevation or pathological Q waves—we
used a 2D convolutional neural network that treats the 12-lead ECG as a spatial-temporal
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Global Branch Local MorphologyRhythm 
Branch

Prediction: 
Electrolyte Disturbance 

Prediction: 
Sinus Rhythm

Prediction: 
Non-specific ST Changes

Test ECG

Figure 2: Multi-branch approach. See Figure 5 for detailed architectural information.

matrix. Input ECGs are shaped as (1×12×1000), where the vertical dimension corresponded
to the 12 leads and the horizontal dimension to time. The model used a modified ResNet18
(He et al., 2015) backbone in which the first convolutional layer was adapted to accept single-
channel 2D inputs with a filter size of (12 × 7). Pretrained ImageNet weights were loaded
for the remaining layers. To preserve temporal resolution, the global average pooling layer
was removed, resulting in a final feature map of shape (512 × 1 × 32), where the temporal
axis was down sampled from 1000 to 32 steps. This branch used partial prototypes that
spanned a small temporal window (3 units, approximately 0.94 seconds at 100 Hz) and were
applied in a sliding fashion across the latent time dimension. During inference, the model
computed similarity scores between each partial prototype and all possible time-localized
windows of the test ECG’s latent feature map. Top-k pooling was then applied to aggregate
the k most activated positions into a final similarity score per prototype.

2D Global Branch. Diagnoses that required global ECG interpretation—such as elec-
trolyte disturbances—were handled using the same 2D CNN architecture as the 2D morphol-
ogy branch. Inputs had shape (1×12×1000) and yielded latent maps of shape (512×1×32).
However, this branch used global prototypes spanning all leads and the full time axis.

Prototype Layer. All prototype matching occurred in the latent feature space of the
CNN feature extractor backbones. Each branch contained its own prototype layer with P
learnable prototypes assigned to specific class labels. Let zi ∈ RD be a patch from the
latent feature map and pj ∈ RD a prototype. We defined the similarity between them as:

S(zi, pj) =

〈
a · zi
∥zi∥2

,
pj

∥pj∥2

〉
(1)
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where ⟨·, ·⟩ denotes the dot product and the scaling factor a adjusts the magnitude of the
similarity score based on the latent dimensionality. This cosine similarity variant, adapted
from Barnett et al. (2024), was used to compute similarity between each prototype and
regions of the latent feature map. For partial prototypes (used in the morphology branch),
each prototype slid across the temporal axis of the latent feature map and produced a
similarity score at each time step. We then applied top-k pooling across these scores to retain
the k highest activations, and computed their average to obtain a single similarity score per
prototype per input. For global prototypes (used in the rhythm and 2D global branches),
each prototype spanned the entire temporal dimension of the latent space, yielding a single
similarity score per input without the need for pooling.

3.4. Prototype Loss Function

Each branch was trained using a composite loss function:

Ltotal = LBCE + λclst · Lclst + λsep · Lsep + λdiv · Ldiv + λcntrst · Lcntrst (2)

where each λ is a tunable hyperparameter controlling the strength of its loss component.

Binary Cross-Entropy Loss.

LBCE = − 1

N

N∑
i=1

C∑
j=1

wj [yij log σ(zij) + (1 − yij) log(1 − σ(zij))] (3)

This loss penalized incorrect predictions for each class independently in a multi-label
setting. Here, yij ∈ {0, 1} is the ground truth label for sample i and class j; zij is the
predicted logit; σ(·) is the sigmoid function; and wj is a class weight.

Clustering Loss.

Lclst = − 1

N

N∑
i=1

max
p∈P+

i

Sip (4)

This term encouraged each prototype to have high similarity to at least one input that
shared its assigned class label. Sip is the similarity between input i and prototype p, and
P+
i denotes the set of prototypes assigned to any of the labels present in sample i. Note that

this term differed from Chen et al. (2019) in that an exact label match was not required.

Separation Loss.

Lsep =
1

N

N∑
i=1

max
p∈P−

i

Sip (5)

This term penalized high similarity between a training sample and prototypes not associated
with any of its labels. P−

i is the set of prototypes whose class assignments are entirely
disjoint from the ground-truth labels of sample i.
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Orthogonality Loss.

Ldiv =
∥∥∥PP⊤ − I

∥∥∥2
F

(6)

This discouraged redundancy among prototypes. Let P ∈ RP×D be the matrix of flattened,
row-normalized prototype vectors, and I the identity matrix. The Frobenius norm measures
deviation from orthonormality. This term was directly adapted from Barnett et al. (2024).

Contrastive Loss. Together, our modifications to the clustering and separation loss
terms extended their logic from requiring an exact label match between a prototype and
a training example, to allowing prototypes to be attracted to any example that contains
their assigned class—regardless of what other labels are present. This enabled clustering in
the presence of multi-label supervision and implicitly supported overlap among frequently
co-occurring diagnoses. However, these terms do not directly structure the relationships
between prototypes themselves. To more explicitly shape the geometry of the prototype
space based on diagnostic co-occurrence, we introduced a contrastive loss applied at the
level of prototype-prototype similarity. This encouraged prototypes assigned to frequently
co-occurring classes to remain similar in the latent space, while discouraging similarity
between prototypes associated with rarely co-occurring diagnoses.

Lcntrst = −1

2

(∑
i,j Cij · S(pi, pj)∑

i,j Cij
−
∑

i,j(1 − Cij) · S(pi, pj)∑
i,j(1 − Cij)

)
(7)

Our contrastive loss was inspired by the Jaccard Similarity Contrastive Loss (JSCL) pro-
posed by Lin et al. (2023) in the context of multi-label text classification. JSCL weights
the contrastive objective between sample pairs by the Jaccard similarity of their label sets,
allowing for a soft notion of positive and negative pairs in multi-label settings. We adopted
this core idea—using Jaccard similarity to scale pairwise contrastive terms—and adapted it
to prototype learning by computing similarity between learned prototype vectors. Specifi-
cally, we precomputed a Jaccard-based co-occurrence matrix C ∈ [0, 1]P×P over the training
label set and used it to weight the pairwise similarity score between prototypes.

While our contrastive loss encouraged prototypes of frequently co-occurring classes to
remain nearby in the latent space, the model still enforced class-specificity in its decision-
making in several ways. First, the classification loss was computed independently for each
class using sigmoid activation and binary cross-entropy, ensuring that incorrect predic-
tions were directly penalized regardless of prototype proximity. Second, we included an
orthogonality regularization term to promote diversity among prototypes and reduce re-
dundancy. Third, both the branch-specific classifiers and the fusion classifier underwent an
L1-constrained convex optimization step after prototype projection, which minimized un-
necessary weights and suppressed prototypes that did not meaningfully contribute to final
predictions. Together, these mechanisms ensured that similarity in the latent space did not
translate into redundant or incorrect activations in the prediction pipeline.

3.5. Training Procedure

Stage 1: Joint Training. We trained each branch independently using the loss defined
in Section 3.4. For the final classifier in each branch, we initialized the prototype-to-class
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weights W ∈ RC×P such that Wcp = 1 if prototype p is assigned to class c, and Wcp = −0.5
otherwise, like the original ProtoPNet (Chen et al., 2019).

Stage 2: Prototype Projection. Each prototype pj was projected to the latent patch
zi that was most similar (under the similarity metric defined in equation 1), among training
samples with label j:

pupdatedj = arg max
zi∈Zj

S(zi, pj) (8)

where Zj denotes the set of all latent patches extracted from training samples that include
class j as one of their labels. For partial prototypes, zi represents a local region of the latent
space (e.g., a short time window in the morphology branch), and similarity was computed
over sliding windows. For global prototypes, zi corresponds to the full latent representation
of the input ECG (spanning all timepoints and/or leads). In both cases, the prototype
was updated to exactly match the latent patch with the highest similarity among eligible
samples.

Stage 3: Fusion Classifier Training. After training and projecting all prototype
branches, we froze their weights and extracted the similarity scores for each ECG i. These
per-prototype similarity scores from the 1D rhythm, 2D morphology, and 2D global branches
were concatenated into a single vector:

si = [s1Di ∥ s2D-p
i ∥ s2D-g

i ] ∈ RP (9)

where si ∈ RP is the full similarity profile for ECG i and P is the total number of prototypes
across all branches. We then trained a fully connected classification layer Wfusion ∈ RC×P

on these similarity vectors to predict multi-label diagnoses:

Lfusion =
1

N

N∑
i=1

BCE(Wfusionsi,yi) + λ

C∑
c=1

∑
j:pj /∈Pc

∣∣∣W (c,j)
fusion

∣∣∣ (10)

This stage used binary cross-entropy loss for multi-label prediction, with L1 regulariza-
tion to encourage sparsity in the learned fusion weights. The sparsity constraint promoted
more selective use of prototype information. Branch-specific classifiers were trained in the
same way, to assess if the fusion classifier yielded performance benefits over simple macro-
averaging. Additional training and tuning details are provided in Appendices E and F.

3.6. Manual Evaluation of Prototype Quality

To assess the interpretability and perceived clinical utility of the learned prototypes, we
conducted a structured review with two practicing physicians. The evaluation focused on the
final ProtoECGNet model trained with the full prototype loss suite, including contrastive
regularization. Details on the graphical user interface (GUI) used for clinician review and
a screenshot of the interface are provided in Appendix C.

The reviewers included a board-certified internist and a board-certified cardiologist. This
pairing was selected to reflect both generalist and specialist clinical perspectives. Each re-
viewer was asked to independently evaluate all available prototypes from the final contrastive
model using a lightweight web-based interface. Prototype quality was assessed along two
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criteria: 1.) Representativeness. Does the prototype reflect a typical or defining presenta-
tion of the assigned diagnostic class? 2.) Clarity. Is the ECG signal in the prototype clean
and interpretable, or is it obscured by noise or artifacts that make interpretation difficult?

Each criterion was rated on a 1–5 Likert scale. Reviewers were instructed to score each
prototype independently based on the projected ECG segment (see Appendices C and D
for additional details). No test cases or model predictions were presented. ECGs that were
identified as having label errors by the clinicians were excluded. We report the mean scores
and 95% confidence intervals across reviewers for each evaluation criterion.

4. Results & Discussion

We evaluate ProtoECGNet in terms of diagnostic classification performance and prototype
interpretability. All results are reported on the held-out PTB-XL test set (fold 10). Macro-
AUROC is used as the primary evaluation metric throughout to allow comparison to the
PTB-XL benchmarking study (Strodthoff et al., 2021).

4.1. Does explicitly modeling rhythm, morphology, and global abnormalities
improve performance over using a single prototype type?

Experiment: To evaluate whether aligning prototype types with clinical reasoning modal-
ities improves performance, we compare models trained on all 71 PTB-XL labels using
(1) a single prototype type (e.g., only 1D or 2D CNNs), and (2) the full ProtoECGNet
multi-branch model. Each architecture is evaluated as a black-box baseline and as a pro-
totype model with and without contrastive loss. Multi-branch prototype outputs are fused
either via simple macro-averaging of branch-specific classifier predictions or a learned fusion
classifier on the similarity scores.

Results: The best-performing single-branch model was the 2D partial prototype model
with contrastive loss, achieving a macro-AUROC of 0.9137 (See Table 1). However, the full
ProtoECGNet model—combining 1D, 2D partial, and 2D global branches—achieved the
highest overall performance when using a learned fusion classifier, with a macro-AUROC
of 0.9248. This exceeds all single-branch models and closely matches the best-reported
performance in the PTB-XL benchmarking study (macro-AUROC 0.925 single-model; 0.929
ensemble) (Strodthoff et al., 2021).

Table 1: Effect of contrastive prototype loss on macro-AUROC across branch-specific,
single-branch, and multi-branch settings for ProtoECGNet.

Setting Model (Label Set) No Contrastive w/ Contrastive

Branch-Specific Labels Rhythm Branch (16 labels) 0.8730 0.8758
Morphology Branch (52 labels) 0.9023 0.9056
Global Branch (3 labels) 0.7461 0.8606

Full 71-Label, Single Branch 1D Prototype Model 0.8462 0.8794
2D Partial Prototype Model 0.9031 0.9137
2D Global Prototype Model 0.8719 0.8983

Full 71-Label, Multi-Branch Macro Aggregation 0.8918 0.9048
Fusion Classifier 0.9010 0.9248
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Discussion: These results support the hypothesis that modeling distinct diagnostic
reasoning types using specialized prototype branches can improve performance. While
several single-branch models perform strongly—such as the 2D partial prototype model
(0.9137)—they apply a uniform prototype structure to all diagnoses, regardless of their un-
derlying interpretive requirements. In contrast, ProtoECGNet’s multi-branch design uses
rhythm prototypes for temporal abnormalities, time-localized 2D prototypes for focal mor-
phological findings, and global 2D prototypes for diffuse ECG patterns. The resulting fusion
classifier achieves the highest overall macro-AUROC (0.9248), indicating that this domain-
tailored architectural structure does not compromise diagnostic performance. Although the
performance gains are modest overall, ProtoECGNet matches or exceeds all single-branch
models and enables diagnosis-appropriate prototype types that are intended to improve
downstream interpretability.

4.2. Does contrastive prototype loss improve diagnostic performance?

Experiment: We evaluate the effect of our proposed contrastive prototype loss across three
settings: (1) branch-specific models trained on disjoint label subsets (rhythm, morphology,
global), (2) single-branch models trained on all 71 labels, and (3) the full multi-branch
model. Each prototype-based model is trained with and without contrastive loss and com-
pared to its corresponding baseline.

Results: Across all settings, contrastive loss improved performance over the standard
prototype loss terms (see Table 1). The largest gains were seen in the 2D global branch,
where contrastive loss raised macro-AUROC from 0.7461 to 0.8606 in the branch-specific
model and from 0.8719 to 0.8983 in the full-label model. Improvements were also observed
in the 2D partial model (0.9031 to 0.9137), 1D model (0.8462 to 0.8794), and both multi-
branch models. The contrastive loss fusion classifier achieved the highest score (0.9248)

Discussion: These results confirm that contrastive prototype loss consistently enhances
diagnostic performance. Improvements were observed across all architectures and label set-
tings, suggesting that our loss formulation provides generalizable gains. This highlights the
importance of class co-occurrence-informed regularization in multi-label prototype learning.

4.3. How does ProtoECGNet compare to black-box baselines?

Experiment: For each model variant—1D, 2D partial, 2D global, and multi-branch—we
compare a black-box ResNet baseline with the corresponding prototype models (with and
without contrastive loss). This allows us to assess whether our interpretable architecture
sacrifices diagnostic performance.

Results: Black-box models achieved strong results—0.9219 for the 1D ResNet18 base-
line and 0.9060 for 2D ResNet18 (2D Global in Table 2). Prototype-based models trained
with contrastive loss approximately matched or surpassed these: the 2D partial model
achieved 0.9137 and the 2D global model reached 0.8983. The full ProtoECGNet fusion
classifier outperformed all individual black-box models, achieving 0.9248.

Discussion: These results demonstrate that interpretable prototype models can achieve
diagnostic performance comparable to traditional black-box CNNs. The 2D partial pro-
totype model surpassed the 2D black-box model, and the final multi-branch model out-
performed even the best-performing single-architecture black-box (1D ResNet18). This
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Table 2: Macro-AUROC comparison of black-box baselines vs. prototype-based models
trained on all 71 labels.

Model Type Black-Box Proto (No Contrastive) Proto (w/ Contrastive)

1D 0.9219 0.8462 0.8794
2D Partial — 0.9031 0.9137
2D Global 0.9060 0.8719 0.8983

Multi-Branch (Macro Agg.) 0.9052 0.8918 0.9048
Multi-Branch (Fusion Classifier) — 0.9010 0.9248

suggests that prototype-based reasoning, when designed with task-specific structure and
contrastive regularization, can achieve state-of-the-art classification while supporting trans-
parent, case-based explanations.

4.4. Are the learned prototypes clinically meaningful?

Experiment: To assess interpretability, we conducted a structured review of all projected
prototypes from the final contrastive model. Two physicians—one with board certification
in cardiology and one in internal medicine—independently rated each prototype on a 1–5
Likert scale for two criteria: representativeness (how well the prototype exemplifies the
assigned class) and clarity (how visually interpretable and artifact-free the segment is).

Results: Average scores from the clinicians for both criteria are shown in Table 3. In
brackets, 95% confidence intervals (CIs) are presented.

Table 3: Average prototype quality scores from structured clinician review (1–5 scale).

Reviewer Representativeness (95% CI) Clarity (95% CI)

Cardiologist 4.29 [4.22, 4.35] 4.48 [4.42, 4.54]
Internist 3.59 [3.52, 3.66] 4.73 [4.69, 4.77]

Discussion: These results suggest ProtoECGNet learns meaningful and recognizable
ECG patterns which align with clinician expectations. High average scores for both rep-
resentativeness and clarity indicate that the prototypes are visually interpretable and di-
agnostically appropriate. This review provides initial validation that the model generates
human-interpretable, class-representative prototypes across diverse diagnostic categories
but it does not assess downstream utility. Future work plans to include this assessment as
a larger user study.

4.5. How does ProtoECGNet support case-based explanations?

Experiment: To evaluate the interpretability of ProtoECGNet’s predictions, we qualita-
tively examined projected prototypes for representative test examples. For each test case,
we visualized the most strongly activated prototype and its corresponding training ECG.

Results: We selected one example from each branch—1D rhythm (Figure 3), 2D local
morphology (Figure 4), and 2D global (Figure 6).
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Test ECG (ID: 449)

Prototype 61 
(Label AFLT)

Similarity Score:
→  6.7785 ←

Training ECG (ID: 10895)

Check Rhythm Strip

Prediction(s) From Fusion Classifier: 
AFLT

Why AFLT? → Because:

This part of test 
ECG 449 looks 
like this part of 
training ECG 

10895

Figure 3: Case-based explanation for atrial flutter (AFLT) predicted by the fusion classifier.
The model predicts AFLT for test ECG 449 based on high similarity to prototype 61, which
was projected onto training ECG 10895. The top row displays the full 12-lead ECGs for
both examples, with rhythm strips (lead II) highlighted in blue to guide interpretation. The
bottom row provides a zoomed-in view of these rhythm strips.

Discussion: These qualitative examples illustrate how ProtoECGNet grounds predic-
tions in concrete, case-based reasoning for all three prototype branches. By structuring
prototypes to align with rhythm, morphology, and global interpretation styles, the model
produces interpretable justifications that mimic clinical reasoning. Unlike saliency maps,
these explanations are faithful by design—derived from similarity to real training exam-
ples. While this analysis is qualitative, it highlights the explanatory potential of structured
prototype learning for real-world decision support.

4.6. Limitations

This study has several limitations that inform directions for future work. First, our pro-
totype taxonomy relies on a manually defined grouping of PTB-XL diagnostic labels into
rhythm, morphology, and global categories. While this structure was clinically motivated
and grounded in ECG interpretation heuristics, it introduces simplifications that may not
fully capture the nuances of certain diagnoses. Some conditions may exhibit features that
span multiple reasoning modalities (e.g., both rhythm and morphology), which are not ex-
plicitly modeled in the current architecture. Future work could explore more flexible or
data-driven grouping strategies.

Second, although our prototype model is designed to support case-based explanation,
we did not evaluate its impact on clinical decision-making. Our clinician review focused on
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Test ECG (ID: 3908)

Prototype 80 
(Label ASMI)

Similarity Score:
→  9.0872 ←

Training ECG (ID: 17381)

Highest 
Activated Window

5-5.9 seconds

Prediction(s) From Fusion Classifier: 
ASMI, SR

Why ASMI? → Because:

This part of test 
ECG 3908 looks 
like this part of 
training ECG 

17381

Figure 4: Case-based explanation for anteroseptal myocardial infarction (ASMI) predicted
by the fusion classifier. The model predicts ASMI for test ECG 3908, citing strong similarity
to prototype 80, which was projected onto a latent patch from training ECG 17381. The top
row shows the full 12-lead ECGs for both test and training examples, with the activated
region highlighted in blue (5–5.9 seconds for the test ECG and 8.9–9.8 seconds for the
prototype). The bottom row zooms into these regions to show all 12 leads. The model
appears to have identified a match based on ST-segment elevations in anterior leads (e.g.,
V2–V4), with a high similarity score of 9.0872.

the clarity and representativeness of projected prototypes, but did not test whether access
to these explanations improves trust, diagnostic accuracy, or diagnostic performance. A
future blinded user study is needed to quantify how interpretability affects clinical utility.

Third, we used ResNet-based CNNs as the backbone architecture across all experiments
to ensure consistency in comparison. While this design choice was appropriate for isolating
the effect of prototype modeling and contrastive loss, it may limit performance relative
to more recent architectures. ProtoECGNet is modular by design and compatible with
alternative backbones, which should be explored to assess potential gains in both accuracy
and interpretability.

Finally, our contrastive prototype loss relies on empirical label co-occurrence statistics
derived from the PTB-XL training set. These statistics may reflect dataset-specific artifacts
or biases and may not generalize across institutions or populations. Methods that learn co-
occurrence-aware regularization in a more adaptive or transferable manner remain an area
for future work.
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5. Conclusions

Our work demonstrated that prototype-based learning can be scaled to complex, multi-
label medical time-series tasks like ECG classification without sacrificing performance. By
separating diagnostic labels into rhythm, morphology, and global categories, ProtoECGNet
enabled the model to learn representations aligned with clinically distinct reasoning pro-
cesses. Each branch learned prototypes tailored to its diagnostic task, and predictions
were grounded in real ECG segments rather than abstract feature maps. Our proposed
contrastive loss improved performance by structuring the prototype space to reflect label
co-occurrence patterns observed in real-world data. Across all architectures, contrastive
training consistently outperformed standard prototype objectives and black-box baselines.
Clinician ratings provided an initial indication that the resulting prototypes were clear and
representative of their assigned classes. While our evaluation focused on ECGs, the ar-
chitectural design and contrastive prototype formulation are broadly applicable to other
structured time-series tasks in medicine. Future work will explore prospective clinical vali-
dation, integration with electronic health records, and expansion to other modalities.
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Hugues Turbé, Mina Bjelogrlic, Christian Lovis, and Gianmarco Mengaldo. Evaluation of
post-hoc interpretability methods in time-series classification. Nature Machine Intelli-
gence, 5(3):250–260, March 2023. ISSN 2522-5839. doi: 10.1038/s42256-023-00620-w.
URL https://www.nature.com/articles/s42256-023-00620-w. Publisher: Nature
Publishing Group.

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I. Lunze,
Wojciech Samek, and Tobias Schaeffter. PTB-XL, a large publicly available electrocar-
diography dataset. Scientific Data, 7(1):154, May 2020. ISSN 2052-4463. doi: 10.1038/
s41597-020-0495-6. URL https://www.nature.com/articles/s41597-020-0495-6.
Publisher: Nature Publishing Group.

Jiaqi Wang, Huafeng Liu, Xinyue Wang, and Liping Jing. Interpretable Image Recog-
nition by Constructing Transparent Embedding Space. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages 875–884, October 2021.
doi: 10.1109/ICCV48922.2021.00093. URL https://ieeexplore.ieee.org/document/

9709918. ISSN: 2380-7504.

Yuanyuan Wei, Roger Tam, and Xiaoying Tang. MProtoNet: A Case-Based Interpretable
Model for Brain Tumor Classification with 3D Multi-parametric Magnetic Resonance
Imaging. April 2023. URL https://openreview.net/forum?id=6Wbj3QCo4U4.

Jia Xie, Zhu Wang, Zhiwen Yu, Yasan Ding, and Bin Guo. Prototype Learning for
Medical Time Series Classification via Human–Machine Collaboration. Sensors, 24
(8):2655, January 2024. ISSN 1424-8220. doi: 10.3390/s24082655. URL https:

//www.mdpi.com/1424-8220/24/8/2655. Number: 8 Publisher: Multidisciplinary Digi-
tal Publishing Institute.

Neal Yuan, Grant Duffy, Sanket S Dhruva, Adam Oesterle, Cara N Pellegrini, John Theurer,
Marzieh Vali, Paul A Heidenreich, Salomeh Keyhani, and David Ouyang. Deep learning of
electrocardiograms in sinus rhythm from us veterans to predict atrial fibrillation. JAMA
cardiology, 8(12):1131–1139, 2023.

Pingyue Zhang and Mengyue Wu. Multi-Label Supervised Contrastive Learning. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 38(15):16786–16793, March 2024.
ISSN 2374-3468. doi: 10.1609/aaai.v38i15.29619. URL https://ojs.aaai.org/index.

php/AAAI/article/view/29619. Number: 15.

Jianwei Zheng, Jianming Zhang, Sidy Danioko, Hai Yao, Hangyuan Guo, and Cyril
Rakovski. A 12-lead electrocardiogram database for arrhythmia research covering

20

https://proceedings.mlr.press/v106/tonekaboni19a.html
https://proceedings.mlr.press/v106/tonekaboni19a.html
https://www.nature.com/articles/s42256-023-00620-w
https://www.nature.com/articles/s41597-020-0495-6
https://ieeexplore.ieee.org/document/9709918
https://ieeexplore.ieee.org/document/9709918
https://openreview.net/forum?id=6Wbj3QCo4U4
https://www.mdpi.com/1424-8220/24/8/2655
https://www.mdpi.com/1424-8220/24/8/2655
https://ojs.aaai.org/index.php/AAAI/article/view/29619
https://ojs.aaai.org/index.php/AAAI/article/view/29619


ProtoECGNet

Input (1, 12, 1000)

Rhythm (12, 1000)

Global (1, 12, 1000)

Local (1, 12, 1000)

Output (512, 1)

Output (512, 1, 32)

Output (512, 1, 32)

1D ResNet18

2D ResNet18

2D ResNet18

Similarity 
Score

9.4
8.2

11.3

5.3
…

Rhythm Prototype 1 (512, 1)
Rhythm Prototype 2 (512, 1)
Rhythm Prototype 3 (512, 1)

Rhythm Prototype n (512, 1)

Predictions: 
Sinus Rhythm,
Non-specific ST 

Changes, 
Electrolyte 
Disturbance

Prototype Layer

8.3
1.9

9.5

4.2

Global Prototype 1 (512, 1, 32)
Global Prototype 2 (512, 1, 32)
Global Prototype 3 (512, 1, 32)

Global Prototype n (512, 1, 32)

6.2
5.7

8.1

4.8

Local Prototype 1 (512, 1, 3)
Local Prototype 2 (512, 1, 3)
Local Prototype 3 (512, 1, 3)

Local Prototype n (512, 1, 3)

Fusion Classifier 
(Linear Layer)

Output Logits for 
All 71 Classes

Feature Extractor

…

… …

…

…

Figure 5: Internal ProtoECGNet architecture. Each input ECG is simultaneously passed
through three branches corresponding to distinct clinical reasoning types: (1) a 1D CNN
with global temporal prototypes for rhythm interpretation, (2) a 2D CNN with time-
localized prototypes for morphological patterns across leads, and (3) a 2D CNN with global
prototypes for diffuse signal abnormalities. Each branch is trained independently on its
assigned diagnostic label subset, and outputs a similarity score for each class. A linear layer
is then trained to map these similarity scores to class logits.

more than 10,000 patients. Scientific Data, 7(1):48, February 2020. ISSN 2052-
4463. doi: 10.1038/s41597-020-0386-x. URL https://www.nature.com/articles/

s41597-020-0386-x. Publisher: Nature Publishing Group.

Appendix A. ProtoECGNet Internal Architecture

Figure 5 contains a detailed overview of the internal architecture of each branch of Pro-
toECGNet.

Appendix B. Example of a Case-Based Explanation from the 2D Global
Branch

Figure 6 contains a case-based explanation for a diagnosis processed via the 2D global
branch of ProtoECGNet.
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Test ECG (ID: 12126)

Similarity Score:
→  2.1029 ←

Training ECG (ID: 12650)

Prediction(s) From Fusion Classifier: 
EL, STD_, SR

Why EL? → Because:

This test ECG 
12126 looks like 

this training 
ECG 12650

Figure 6: Case-based explanation for an electrolyte disturbance (EL) predicted by the
fusion classifier. The model predicts EL for test ECG 12126, citing strong similarity to an EL
prototype that was projected onto training ECG 12650. Since this diagnosis uses 2D global
prototypes, full 12-lead ECGs are shown for both the test and training examples—along
with their similarity score.

Appendix C. Prototype Review Interface

We developed a lightweight web interface to display projected prototypes for clinician eval-
uation. Each prototype was rendered as a traditional 12-lead ECG with a red grid and
standard calibration, labeled only by its diagnostic class. Reviewers scored each prototype
independently across multiple dimensions using dropdown menus and selection boxes. A
screenshot of the interface is shown in Figure 7.
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Figure 7: Clinician review interface for prototype evaluation.

Appendix D. ECG and Prototype Visualization

All ECG visualizations follow the conventional clinical 12-lead layout. The top three rows
display 2.5-second segments from leads I, II, III → aVR, aVL, aVF → V1–V6 in standard
order, and the bottom row shows a continuous 10-second rhythm strip from lead II. This
format is widely used in clinical ECG interpretation and was applied consistently in both
the clinician review interface and all prototype figures to ensure familiarity for clinicians.

For each prototype, we visualize the training ECG segment that produced the latent
patch onto which the prototype was projected. All branches of the model—including the 1D
rhythm branch—receive the full 10-second, 12-lead ECG as input. For global prototypes
(used in the 1D rhythm and 2D global branches), we display the full ECG. In the 1D
rhythm branch, as the model does not explicitly model inter-lead spatial relationships, we
highlight the bottom rhythm strip (lead II) to help viewers interpret the temporal pattern
recognized by the model. For partial prototypes (2D morphology branch), we highlight the
exact 0.94-second window (3 of 32 latent time steps) that was selected during prototype
projection. To reflect the fact that the model considers all 12 leads within this window,
we also include a full-lead cutout of the selected time segment, allowing assessment of
local inter-lead waveform morphology. These visualizations provide clinically grounded and
semantically faithful views of the prototype segments used by the model to support its
predictions.
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Appendix E. Implementation Details

All models were implemented in PyTorch. We used the Adam optimizer, and explored cosine
annealing, cyclic, and step-based learning rate schedulers during hyperparameter tuning.
Each model was trained for up to 200 epochs, with early stopping applied if validation
macro-AUROC did not improve for 10 consecutive epochs. Model checkpoints were saved
based on the best validation AUROC, and the corresponding weights were used for inference
and testing.

Hyperparameter tuning was conducted using Optuna with 200 trials per model variant.
Tuned parameters included learning rate, weight decay, dropout rate, and learning rate
scheduler configuration. Both the joint training phase and the classifier stage (including
the fusion classifier and branch-specific classifiers) were tuned independently using this
strategy. Loss weightings for each prototype loss term (λclst, λsep, λdiv, λcntrst) were also
included as tunable parameters.

When contrastive loss was not used, we adopted the prototype loss coefficients from
Barnett et al. (2024). For contrastive models, we conducted a dedicated 1000-trial Optuna
sweep to tune all four loss coefficients. This sweep fixed non-loss hyperparameters (dropout
= 0.3, batch size = 32, learning rate = 0.001, scheduler = ReduceLROnPlateau, L2 weight
decay = 1×10−4), and only optimized the four loss weights. This was run separately for the
1D rhythm, 2D partial, and 2D global prototype branches; the resulting optimal values were
relatively consistent across branches, and we selected rounded values that fell between the
final tuned values of all three branches. These values were then held fixed in all subsequent
experiments using contrastive regularization.

Prototype-based models underwent a three-stage training procedure (Section 3.5). Stage
1 (joint training) and Stage 2 (prototype projection) were repeated once to allow the proto-
types to better converge on class-representative features, after which performance typically
stabilized (no further increases in validation AUC). Stage 3 (fusion classifier training) was
conducted only once, after freezing the prototype branches.

Appendix F. System Requirements

All model training and inference were conducted on a high-performance computing clus-
ter using a single NVIDIA A100 GPU with 40GB memory. Models were implemented in
Python 3.10 using PyTorch 2.6.0 and PyTorch Lightning 2.5.0. Training visualization was
performed with TensorBoard, and ECG data handling used Pandas and WFDB. Hyper-
parameter optimization was conducted with Optuna 4.2.1. All code was executed in a
SLURM-managed Linux environment with CUDA 12 and cuDNN 9.1.

Appendix G. Diagnostic Groupings

Each of the 71 PTB-XL diagnostic labels was assigned to one of three prototype branches
based on the type of visual reasoning required for diagnosis. These groupings were defined
by two board-certified physicians (one cardiologist & one internist) and used to train the
corresponding branch of ProtoECGNet. The full list of SCP codes and their assigned
groupings is shown below.
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1D Rhythm Branch (16 diagnoses)

• 1AVB: first degree AV block

• 2AVB: second degree AV block

• 3AVB: third degree AV block

• AFIB: atrial fibrillation

• AFLT: atrial flutter

• BIGU: bigeminal pattern (unknown origin, SV or ventricular)

• IVCD: nonspecific intraventricular conduction disturbance

• PACE: artificial pacemaker

• PSVT: paroxysmal supraventricular tachycardia

• SARRH: sinus arrhythmia

• SBRAD: sinus bradycardia

• SR: sinus rhythm

• STACH: sinus tachycardia

• SVARR: supraventricular arrhythmia

• SVTAC: supraventricular tachycardia

• TRIGU: trigeminal pattern (unknown origin, SV or ventricular)

2D Morphology Branch (52 diagnoses)

• ABQRS: abnormal QRS

• ALMI: anterolateral myocardial infarction

• AMI: anterior myocardial infarction

• ANEUR: ST-T changes from ventricular aneurysm

• ASMI: anteroseptal myocardial infarction

• CLBBB: complete left bundle branch block

• CRBBB: complete right bundle branch block

• HVOLT: high QRS voltage

• ILBBB: incomplete left bundle branch block

• ILMI: inferolateral myocardial infarction
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• IMI: inferior myocardial infarction

• INJAL: injury in anterolateral leads

• INJAS: injury in anteroseptal leads

• INJIL: injury in inferolateral leads

• INJIN: injury in inferior leads

• INJLA: injury in lateral leads

• INVT: inverted T waves

• IPLMI: inferoposterolateral myocardial infarction

• IPMI: inferoposterior myocardial infarction

• IRBBB: incomplete right bundle branch block

• ISCAL: ischemia in anterolateral leads

• ISCAN: ischemia in anterior leads

• ISCAS: ischemia in anteroseptal leads

• ISCIL: ischemia in inferolateral leads

• ISCIN: ischemia in inferior leads

• ISCLA: ischemia in lateral leads

• ISC : nonspecific ischemia

• LAFB: left anterior fascicular block

• LAO/LAE: left atrial overload/enlargement

• LMI: lateral myocardial infarction

• LNGQT: long QT interval

• LOWT: low amplitude T waves

• LPFB: left posterior fascicular block

• LPR: prolonged PR interval

• LVH: left ventricular hypertrophy

• LVOLT: low QRS voltage

• NDT: nondiagnostic T abnormalities

• NST : nonspecific ST changes
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• NT : nonspecific T wave changes

• PAC: premature atrial complex

• PMI: posterior myocardial infarction

• PRC(S): premature complexes

• PVC: premature ventricular complex

• QWAVE: Q waves present

• RAO/RAE: right atrial overload/enlargement

• RVH: right ventricular hypertrophy

• SEHYP: septal hypertrophy

• STD : ST depression

• STE : ST elevation

• TAB : T wave abnormality

• VCLVH: voltage criteria for LVH

• WPW: Wolff-Parkinson-White syndrome

2D Global Branch (3 diagnoses)

• DIG: digitalis effect

• EL: electrolyte disturbance or drug effect

• NORM: normal ECG
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