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Prototype-based neural networks offer interpretable predictions by comparing inputs to
learned, representative signal patterns anchored in training data. While such models have
shown promise in the classification of physiological data, it remains unclear whether their
prototypes capture an underlying structure that aligns with broader clinical phenotypes. We
use a prototype-based deep learning model trained for multi-label ECG classification using
the PTB-XL dataset. Then without modification we performed inference on the MIMIC-IV
clinical database. We assess whether individual prototypes, trained solely for classification,
are associated with hospital discharge diagnoses in the form of phecodes in this external
population. Individual prototypes demonstrate significantly stronger and more specific asso-
ciations with clinical outcomes compared to the classifier’s class predictions, NLP-extracted
concepts, or broader prototype classes across all phecode categories. Prototype classes with
mixed significance patterns exhibit significantly greater intra-class distances (p < 0.0001),
indicating the model learned to differentiate clinically meaningful variations within diagnos-
tic categories. The prototypes achieve strong predictive performance across diverse condi-
tions, with AUCs ranging from 0.89 for atrial fibrillation to 0.91 for heart failure, while also
showing substantial signal for non-cardiac conditions such as sepsis and renal disease. These
findings suggest that prototype-based models can support interpretable digital phenotyping
from physiologic time-series data, providing transferable intermediate phenotypes that cap-
ture clinically meaningful physiologic signatures beyond their original training objectives.
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1. Introduction

Modern healthcare systems generate vast quantities of physiologic time-series data, yet our
ability to extract clinically meaningful structure from these signals remains limited. Elec-
trocardiograms (ECGs), in particular, encode rich information about cardiac and systemic
physiology. While deep learning models have demonstrated impressive accuracy in ECG-based
diagnosis, I their opaque representations offer little insight into how physiologic patterns re-
late to broader patient phenotypes. Recently, Hughes et al® demonstrated that ECGs can
detect a surprisingly broad spectrum of 1,243 different cardiac and non-cardiac conditions,
including previously unknown phenotypes such as neutropenia and menstrual disorders, while
revealing that many non-cardiac conditions share similar ECG signatures.

As precision medicine aims to stratify patients based on biologically meaningful traits,
there is growing interest in models that not only predict, but also explain and discover.
Prototype-based neural networks offer an interpretable alternative to black-box classifiers
by grounding predictions in similarity to representative signal patterns#™ Recent work has
shown that such models can yield clinically coherent explanations in ECG classification tasks,*
suggesting a promising foundation for data-driven phenotyping.

In this work, we explore whether the latent structure learned by a prototype-based ECG
model can reveal informative associations with real-world clinical phenotypes. Rather than
training a model for diagnostic prediction, we use a prototype-based model to perform infer-
ence on ECGs from the MIMIC-IV database,® and assess whether specific waveform prototypes
correspond to structured phenotypes such as discharge diagnoses. Qur central hypothesis is
that learned ECG prototypes—despite being trained for a different task—may capture trans-
ferable physiologic signatures linked to disease.

This study bridges physiologic modeling and clinical phenotyping by demonstrating how
interpretable, prototype-based representations learned for the classification of raw ECGs can
be associated with both cardiac and unrelated phenotypes. This reframes the potential of
prototype-based models not just as diagnostic tools, but as interpretable instruments with
the potential to reveal clinically meaningful structure in physiologic signals.

2. Related Work
2.1. Prototype-Based Learning for Interpretability

Prototype-based neural networks offer a transparent alternative to black-box deep learning
and post-hoc methods by grounding predictions in similarity to a learned set of representative
patterns® Originally developed for image classification, these models have been extended to
time-series domains such as EEG and ECG, where each prototype is anchored to a localized
segment of the input signal/®” Recent work has demonstrated that prototype-based ECG
models can produce clinically meaningful explanations and achieve competitive performance
on multi-label tasks”? However, prior applications focus on supervised classification, and to
our knowledge, none have explored whether learned prototypes are associated with structured
clinical outcomes.



2.2. Phenotyping from Physiologic Signals

Computational phenotyping plays a central role in precision medicine by enabling data-driven
identification of patient subgroups that cut across conventional diagnostic boundaries. Existing
phenotyping frameworks often rely on structured EHR data such as ICD codes, lab results,
and medication history,*!¥ with limited incorporation of raw physiologic signals. However,
with recent advances in deep learning, there has been a growing interest in using electrocar-
diograms (ECGs) beyond conventional cardiac classification tasks for phenotype discovery.
Recent large-scale studies have demonstrated that ECGs encode features associated with a
wide range of cardiac and non-cardiac phenotypes, including heart failure, chronic kidney
disease, and sepsis.2* Friedman et al. used unsupervised ECG autoencoders to derive la-
tent representations linked to structured outcomes through phenome-wide association studies
(PheWAS) across multiple cohorts™ Similarly, PheWASNet demonstrated that supervised
deep learning models trained on raw ECGs can predict over 1000 phenotypes mapped from
electronic health records (EHRs)-—though without interpretability® An important difference is
that their approach set out specifically to map ECGs to phenotypes. While these models high-
light the richness of ECG signals, their latent embeddings are difficult to interpret and offer
limited insight into which waveform characteristics contribute to prediction. This work learns
interpretable features from ECGs by performing a different task and then examines whether
these features are associated and predictive of both related and unrelated phenotypes.

3. Methods
3.1. Data
3.1.1. PTB-XL Dataset

The publicly available PTB-XL dataset!? was used for model training. PTB-XL contains
21,837 12-lead ECG recordings from 18,885 patients, each sampled at 100 Hz over 10 seconds.
Each ECG is annotated with one or more diagnostic statements, mapped to the SCP coding
scheme, spanning rhythm disturbances, morphological abnormalities, and conduction disor-
ders. We adopted the 100 Hz version of the signals and followed a multi-label classification
setup with all 71 labeled classes. The original stratified 8:1:1 split from the dataset was used
for training, validation, and test sets.

3.1.2. MIMIC-1V ECG Subset

For downstream phenotyping, we used 12-lead ECG recordings from the MIMIC-IV database.®
All ECGs were resampled to 100 Hz. Although MIMIC-IV does not contain expert ECG
annotations, structured metadata on hospital discharge diagnoses (ICD-9 and ICD-10) was
used for the downstream association analyses. Diagnoses codes were converted to phenotype
codes (phecodes) based on the phewas catalog.® ECGs with missing metadata were excluded.
Where a patient had multiple ECGs during a single admission, we used only the first ECG of
their admission.
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Fig. 1. Overview of study approach.

3.2. Model and Prototype Inference

See Figure(l|for an overview of our study approach. We used a prototype-based neural network
architecture for multi-label ECG classification trained using methods previously described in
the literature (code: https://github.com/bbj-lab/protoecgnet).” In brief, the model ar-
chitecture consisted of three parallel branches: a one-dimensional CNN with global prototypes
for rhythm detection, a two-dimensional CNN with local time-based prototypes for morphol-
ogy recognition, and a two-dimensional CNN with global prototypes for whole-ECG patterns.
Each branch was trained independently using binary cross-entropy loss and a prototype-based
loss that promoted both clustering of within-class examples and separation of dissimilar ones.
After training the prototype and feature extractor layers, each prototype was projected onto
the latent space region most similar to it among training samples with its assigned label.
Then, a final fully connected classifier was trained using the similarity scores from all pro-
totypes across branches. During inference, the model was applied to both the PTB-XL test
set and all eligible ECGs from MIMIC-IV. For each input ECG, we extracted the similarity
score to each prototype and the most activated prototypes. No retraining or adaptation was
performed on the MIMIC-IV data.

3.3. Prototype Grouping and Association Analysis
3.3.1. Prototype Analysis

To discover higher-level phenotypic structure and reduce redundancy, we grouped prototypes
based on similarity in the latent space. For each model branch, we computed pairwise cosine
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similarities” between the final projected prototype vectors. This analysis visualized proto-
type embeddings across three ECG feature extraction approaches using principal component
analysis (PCA). Prototype vectors were extracted from 1D rhythm branch features, 2D global
features, and 2D morphology features, with each prototype assigned to a label held by its asso-
ciated training ECG from PTB-XL. As described by Chen et al.* some prototypes may project
onto the same training patch in the latent space and therefore be identical, but this is not an
issue for classification tasks as the weights of the linear layer are tuned to accounted for this.
Here, however, redundant prototypes were collapsed to facilitate analysis of independent pro-
totypes. PCA dimensionality reduction was applied to transform high-dimensional prototype
vectors into 2D coordinates for visualization. The resulting scatter plots displayed prototype
distributions colored by clinical class, with centroid-based labeling used for the morphology
features due to high density. This visualization approach enabled assessment of prototype
clustering patterns and class separability across different feature extraction methodologies.

3.3.2. Extraction and Filtering of UMLS Concepts from ECG Reports

To identify structured clinical concepts within unstructured electrocardiogram (ECG) re-
ports, we used a natural language processing (NLP) pipeline based on the spaCy frame-
work, augmented with biomedical extensions from SciSpaCy.*# Specifically, we employed the
en_core_sci_scibert language model, which is pretrained on large-scale biomedical corpora
and optimized for clinical and scientific text. We augmented the pipeline with two components:
(1) the scispacy_linker, which performs entity linking to the Unified Medical Language Sys-
tem,2? and (2) the negex component!® from negspacy, which detects negated clinical concepts.

The scispacy_linker was configured to resolve abbreviations and to prioritize entity
mentions linked to definitions in UMLS, enhancing both precision and interpretability. For
each report, the pipeline extracted named entities, resolved them to candidate UMLS concepts,
and returned their concept unique identifiers (CUIs), canonical names, and linkage scores.
Detected entities were also annotated for negation status based on syntactic context. Each
report was processed individually, and the resulting concept-level annotations were aggregated
into a structured list of UMLS concepts per report, including the original mention, concept
metadata, and negation label.

To facilitate downstream analysis, we computed the frequency distribution of all extracted
UMLS concepts across the corpus. Concepts which appeared at least 100 times were then
manually reviewed and filtered to retain only those relevant to ECG interpretation—such
as cardiac diagnoses (e.g., atrial fibrillation, myocardial infarction), waveform findings (e.g.,
ST elevation, QT prolongation), and procedural terminology (e.g., echocardiography refer-
ences, pacemaker placement). This filtering step ensured that subsequent analyses focused on
clinically meaningful ECG content rather than incidental mentions or non-cardiac concepts.

3.3.3. Statistical Association with Clinical Diagnoses

We performed association testing between the ECG-derived features and phenotypic outcomes
using Fisher’s exact tests on the full set of ECGs (using only the first ECG of an admission
where multiple ECGs were performed). The categorical variables examined included ECG clas-



sification outcomes (“fusion”), prototype-based groupings across the three branches (1D, 2D
partial, and 2D global prototypes), as well as the extracted binary medical concept indicators
derived from UMLS Concept Unique Identifiers (CUIs). Phenotypic outcomes were represented
by phecodes derived from the discharge diagnoses, with inclusion criteria requiring minimum
prevalence thresholds of 0.0% for phecodes and 0.1% for CUIs to ensure statistical power. For
each phecode, 2x2 contingency tables were constructed comparing the presence/absence of
each categorical feature value or CUI against phecode status. Multiple testing correction was
applied using the Benjamini-Hochberg false discovery rate (FDR) method, ™ with statistical
significance defined as q < 0.05.

3.4. Prediction of Phecodes

ECG data were preprocessed by parsing fusion class predictions and extracting best-matching
prototypes for each of the 1D, 2D partial, and 2D global feature spaces using similarity scores
to the patient’s first ECG of their admission. Phecode outcomes were constructed as bi-
nary matrices from diagnostic codes, with prevalence filtering applied to retain phenotypes
occurring in >0.1% of patients. Four feature sets were evaluated: fusion classes, prototype
classes, NLP-derived concepts (CUIs), and the combination of prototype embeddings and fu-
sion classes (Prototype Combination). Logistic regression models were trained using subject-
level train/test splits to prevent data leakage. Date shifting in MIMIC prevents temporal
stratification of the dataset split. However, given the input features are an ECG rather than
structured or clinically initiated data, there is unlikely to be significant dataset shift. Model
performance assessed via area under the ROC curve (AUC) and 95% confidence intervals
computed through bootstrap resampling (n=1000). This framework enabled systematic com-
parison of different ECG feature representations for phenotype prediction across multiple
cardiovascular and systemic conditions. The conditions of interest were chosen directly based
on the Phecodes examined in Hughes et al®

3.5. Software

All data processing and statistical analyses were conducted using Python (NumPy, SciPy,
scikit-learn) and PostgreSQL for database querying. ECG visualization and clustering analyses
were performed using matplotlib and seaborn.

4. Results

This work evaluates whether the interpretable prototypes learned in Sethi et al” are potentially
useful intermediate or digital biomarkers. To do this, we took the ProtoECGNet model trained
on the labeled PTB-XL dataset and performed inference on ECGs from MIMIC-IV-ECG®
Within MIMIC there are computer generated reports, but the cardiologists’ interpretations
are not available—discharge summaries are the only available notes. This means there are no
gold-standard labels for ECG class prediction. Thus, in Figure [2 we show ProtoECGNet’s
predicted classes using PTB-XL and MIMIC to compare the populations. While many labels
are predicted at near equal ratios between the two datasets, there are several predicted sub-



stantially less frequently in MIMIC, particularly NORM and SR—Ilikely reflecting the higher
patient acuity in the MIMIC cohort, which consists solely of patients admitted to the hospital.

Label Distribution Shift: PTB-XL vs MIMIC-IV-ECG
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Fig. 2. Comparison of predicted label distributions between PTB-XL and MIMIC-IV-ECG. A..)
Frequencies (percentage of samples with predicted probability > 0.5) of the 15 most prevalent pre-
dicted labels in MIMIC-IV-ECG, compared across both datasets. B.) Percentage difference in pre-
dicted label prevalence between MIMIC-IV-ECG and PTB-XL. Positive differences indicate higher
predicted prevalence in MIMIC-IV-ECG; negative differences indicate lower prevalence compared to
PTB-XL. C.) Scatterplot comparing label frequencies in PTB-XL and MIMIC-IV-ECG, illustrating
broad agreement in prevalence patterns despite dataset differences (e.g., ICU setting in MIMIC).
Labels with an absolute percentage difference greater than 1.0% are annotated. The dashed line in-
dicates equal prevalence across datasets. D.) Distribution of predicted probabilities for the 15 most
prevalent labels in MIMIC-IV-ECG, shown for both PTB-XL and MIMIC-IV-ECG among samples
where that label was predicted with probability > 0.5.

Our prior work found advantages to learning prototypes across three branches, reflecting
the way a human clinician might read an ECG: a 1D CNN with global prototypes for rhythm
classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and
a 2D CNN with global prototypes for diffuse abnormalities” To better understand the la-
bel space, we performed principle component analysis (PCA) to the vectors of the learned
prototypes from ProtoECGNet within each class (Figure |3)).
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Fig. 3. Principle Component Analysis of the prototype vector embeddings for each class within the
3 branches. A.) Shows each of the 5 prototypes for the 1D rhythm branch, B.) the 7 prototypes
for each class in the 2D global branch, and C.) centroids for the 18 prototypes per class in the 2D
morphology branch. Only centroids are shown to reduce over-plotting and to allow for visualization.

In the rhythm branch, the two principal components aligned with core interpretive axes
used by clinicians: the vertical axis appeared to reflect heart rate, separating bradyarrhyth-
mias (e.g., third-degree AV block) from tachyarrhythmias (e.g., supraventricular tachycardia),
while the horizontal axis partially separated sinus from non-sinus rhythms. Sinus rhythms (SR,
SARRH, STACH, SBRAD) formed a compact cluster, with 1AVB positioned slightly superior
to SR, consistent with its more frequent occurrence in low heart rate contexts. Atrial arrhyth-
mias (AFIB, AFLT) appeared near one another despite differing morphology. Bigeminy and
trigeminy appropriately clustered tightly, as did the supraventricular tachycardias SVTAC
and PSVT. One anomaly was SVARR, which clustered with pacemaker rhythms—potentially
reflecting latent similarity to atrially paced morphologies.

In the 2D morphology branch, PCA revealed structure consistent with anatomical and
electrical localization. Posterior myocardial infarctions (PMI, IPLMI, IPMI) clustered with
right-sided conduction abnormalities (CRBBB, LPFB, RVH), reflecting shared manifesta-
tions in right precordial leads. In contrast, anterior (AMI) and inferior (IMI) MIs clustered
separately. Ischemic syndromes (ISC, ISCLA, ISCIN, ISCAL, ISCIL) formed a cohesive group,
along with ST depressions (STD) and inverted T waves (INVT), which are often diagnostic
features of ischemia. Hypertrophy patterns were more dispersed but showed partial alignment
with other ECG patterns: RVH was near right-sided conduction abnormalities, while LVH



appeared near left-sided conduction abnormalities, HVOLT and nonspecific T-wave abnor-
malities. Wide QRS diagnoses (e.g., ILBBB, CLBBB, ABQRS) partially grouped, but not
uniformly. The global 2D branch included only three labels (NORM, EL, DIG), which were

clearly separated in PCA space.
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Fig. 4. Comparison of odds ratio magnitude based on each set of available labels. Fusion Labels:
ProtoECGNet final predictions, NLP Concept: extracted diagnosis related concepts from computer
generated ECG reports, Prototype Class: Branch-level class predictions within ProtoECGNet, and
Prototype ID: branch-level individual prototypes the model has determined to be most similar for a
particular ECG. Note that all pairwise comparisons are highly significant (*** = p-value < 0.001)

Performing inference using the pretrained ProtoECGNet model produces labels at three
potential levels: a.) fusion class labels are the final predicted classes based on all three branches,
b.) prototype class labels are the class predictions within a single branch, and ¢.) prototype ID
labels are the most representative prototypes for an example within the prototype class. An
additional source of labels are the UMLS concepts which were extracted from the automated
ECG interpretation currently in clinical use. We performed association testing via a Phe WAS
analysis using each of these four label groupings (see Figure [4)). We observed both across all
Phecodes (Figure [4)) and within major systems (Figure [5)) that performing the association at
the individual prototype level yields stronger associations than any of the other modalities.
This was even true within Phecodes categorized within the Circulatory System where there
may be a tautological process between the computer-generated report and the diagnosis codes
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on discharge.

Table 1. Mean intra-class cosine distances for proto-
type classes with mixed or uniform significance status. A
Mann-Whitney U test'® showed a significant difference
(p < 0.0001), and Spearman correlation between odds
ratio and intra-class distance was p = 0.14, p < 0.0001.

Status N Mean Std 95% CI

Mixed 870 0.2450 0.0470 [0.2419, 0.2481]
Uniform 73750 0.2279 0.0557 [0.2275, 0.2283]

As an additional verification of the learned prototypes, we compared the intra-class dis-
tances in the learned prototype embedding space (Table . We separated branch-level classes
into groups: a.) Uniform: where all prototypes within a branch-level class were either sig-
nificant or all were not significant based on the multiple testing corrected p-value, and b.)
Mixed: where some of the prototypes were significant and others were not within the same
branch-level class. We observe that the distance between the prototypes is significantly longer
in classes where association significance was mixed (which indicates a more heterogeneous
class).

Finally, we evaluated whether the prototypes could be useful for the prediction of Phecodes
at discharge in a similar manner to Hughes et al® in Table [2] However, this cannot be a direct
comparison due to two major differences. First, the models in Hughes et al. were explicitly
trained to predict the outcome of interest from the raw ECG, and second, the sample size in
MIMIC is substantially smaller. In contrast, ProtoECGNet was trained only to predict ECG
labels/interpretations. Despite these handicaps, we observed that using both the fusion classes
and the representative prototypes (Prototype Combined) provided substantial signal and pre-
dicted many of the outcomes examined by Hughes et al. Intuitively, performance was especially
strong for ECG-related diagnoses (e.g., atrial fibrillation), but we also observed similar trends
to Hughes et al. for many of the other outcomes. This indicates that the prototypes learned
by ProtoECGNet are potentially generalizable intermediate phenotypes or digital biomarkers
which may be useful tools in disease specific and broader biological understanding.

5. Discussion

In this study, we have demonstrated that prototype-based neural networks trained for ECG
classification can capture clinically meaningful physiologic signatures or intermediate pheno-
types that extend beyond their original training objectives. Our ProtoECGNet model, trained
solely on the PTB-XL dataset for multi-label ECG classification, successfully transferred to
the MIMIC-1IV clinical database and revealed interpretable associations with a broad spectrum
of clinical phenotypes, including both cardiac and non-cardiac conditions.

The key findings of our work highlight several important strengths of the prototype-based
approach. First, individual prototypes consistently showed stronger and more specific associ-
ations with clinical outcomes compared to fusion class predictions, NLP-extracted concepts,



Table 2. Performance of Phecode predictors based on input features (logistic regression).

Phecode  Description Training Cases Fusion Class CUI Prototype Combined

38.0 Septicemia 3125 0.69 [0.68, 0.71]  0.69 [0.67, 0.71]  0.67 [0.65, 0.68] 0.77 [0.76, 0.79]

38.1 Gram negative septicemia 1050  0.67 [0.64, 0.70]  0.67 [0.63, 0.70]  0.61 [0.58, 0.65] 0.68 [0.65, 0.72]

260.0 Protein-calorie malnutrition 2215  0.61 [0.59, 0.63]  0.58 [0.56, 0.61]  0.58 [0.55, 0.60] 0.67 [0.65, 0.70]

260.2 severe protein-calorie 1055  0.60 [0.57, 0.64]  0.60 [0.57, 0.64]  0.61 [0.58, 0.65] 0.71 [0.68, 0.75]
malnutrition

275.53  Disorders of phosphorus 1525  0.58 [0.55, 0.61]  0.57 [0.54, 0.60]  0.57 [0.53, 0.60] 0.64 [0.60, 0.67]
metabolism

276.11 Hyperosmolality and/or 2462  0.67 [0.65, 0.70]  0.66 [0.64, 0.68]  0.64 [0.62, 0.67] 0.72 [0.70, 0.74]
hypernatremia

276.6 Fluid overload 1328  0.62 [0.59, 0.65]  0.62 [0.59, 0.65]  0.56 [0.53, 0.59] 0.67 [0.64, 0.70]

284.1 Pancytopenia 1217  0.54 [0.51, 0.58]  0.54 [0.50, 0.57]  0.57 [0.53, 0.60] 0.59 [0.56, 0.62]

286.7 Other and unspecified 1112 0.65 [0.62, 0.69]  0.65 [0.62, 0.68]  0.63 [0.60, 0.66] 0.73 [0.69, 0.76]
coagulation defects

290.2 Delirium due to conditions 2646  0.64 [0.62, 0.66]  0.62 [0.60, 0.64]  0.61 [0.59, 0.63] 0.70 [0.68, 0.72]
classified elsewhere

317.11 Alcoholic liver damage 1747 0.64 [0.62, 0.67]  0.64 [0.61, 0.67]  0.64 [0.61, 0.67] 0.70 [0.67, 0.73]

395.2 Nonrheumatic aortic valve 3025  0.74 [0.72, 0.76]  0.73 [0.72, 0.75]  0.68 [0.66, 0.70] 0.78 [0.76, 0.80]
disorders

395.6 Heart valve replaced 1792 0.77 [0.75, 0.79]  0.78 [0.76, 0.80]  0.74 [0.72, 0.76] 0.86 [0.84, 0.88]

411.2 Myocardial infarction 9581  0.73 [0.72, 0.74]  0.72 [0.70, 0.73]  0.71 [0.70, 0.72] 0.81 [0.79, 0.82]

411.8 Other chronic ischemic heart 1360  0.83 [0.81, 0.85] 0.81 [0.79, 0.83]  0.79 [0.77, 0.82] 0.90 [0.88, 0.92]
disease, unspecified

415.2 Chronic pulmonary heart 3250 0.72 [0.71, 0.74]  0.71 [0.69, 0.73]  0.70 [0.68, 0.72] 0.80 [0.78, 0.82]
disease

425.1 Primary/intrinsic 2034  0.79 [0.77, 0.81]  0.77 [0.75, 0.80]  0.77 [0.75, 0.79)] 0.88 [0.86, 0.90]
cardiomyopathies

427.12 Paroxysmal ventricular 1486  0.73 [0.70, 0.75]  0.72 [0.69, 0.74]  0.73 [0.70, 0.76] 0.79 [0.76, 0.81]
tachycardia

427.21 Atrial fibrillation 15712 0.81 [0.80, 0.81]  0.81 [0.80, 0.82]  0.80 [0.79, 0.80] 0.89 [0.88, 0.89)]

427.22 Atrial flutter 1926 0.74 [0.72, 0.76]  0.75 [0.72, 0.77]  0.73 [0.70, 0.75] 0.85 [0.83, 0.87]

427.42 Cardiac arrest 1212 0.71 [0.68, 0.74]  0.69 [0.66, 0.72]  0.70 [0.67, 0.73] 0.73 [0.71, 0.76]

428.1 Congestive heart failure (CHF) 8327  0.81 [0.80, 0.81]  0.80 [0.79, 0.81]  0.80 [0.79, 0.81] 0.91 [0.90, 0.92]
NOS

428.3 Heart failure with reduced EF 5807 0.83 [0.82, 0.84] 0.82 [0.81, 0.84]  0.80 [0.79, 0.81] 0.88 [0.87, 0.89)]
[Systolic or combined heart
failure]

428.4 Heart failure with preserved EF 5842  0.73 [0.72, 0.75]  0.73 [0.72, 0.74]  0.70 [0.69, 0.72] 0.82 [0.80, 0.83]
[Diastolic heart failure]

501.0 Pneumonitis due to inhalation 2325  0.67 [0.65, 0.69]  0.65 [0.63, 0.67]  0.64 [0.62, 0.66] 0.72 [0.70, 0.74]
of food or vomitus

507.0 Pleurisy; pleural effusion 2746  0.65 [0.64, 0.68]  0.63 [0.61, 0.66]  0.62 [0.60, 0.64] 0.72 [0.70, 0.74]

509.1 Respiratory failure 6355 0.67 [0.66, 0.69]  0.67 [0.66, 0.68]  0.65 [0.63, 0.66] 0.77 [0.75, 0.78]

572.0 Ascites (non malignant) 1416 0.64 [0.61, 0.67]  0.63 [0.60, 0.67]  0.57 [0.54, 0.60] 0.69 [0.66, 0.72]

585.32 End stage renal disease 2242 0.70 [0.68, 0.72]  0.68 [0.66, 0.70]  0.63 [0.60, 0.65] 0.78 [0.76, 0.80]

994.2 Sepsis 4201 0.69 [0.68, 0.71]  0.69 [0.68, 0.71]  0.66 [0.65, 0.68] 0.77 [0.76, 0.79]

or broader prototype classes. This granular specificity suggests that the learned prototypes
capture physiologically relevant waveform patterns that align with distinct pathophysiologic
processes. Second, our analysis revealed that prototype classes with mixed significance pat-
terns (where some prototypes within a class were significantly associated with outcomes while
others were not) exhibited significantly greater intra-class distances, indicating that the model
learned to differentiate subtle but clinically meaningful variations within broader diagnostic
categories. Third, the prototypes demonstrated substantial predictive utility across diverse
conditions, achieving strong performance not only for cardiovascular phenotypes like atrial
fibrillation (AUC 0.89) and heart failure (AUC 0.91), but also for systemic conditions such
as sepsis and renal disease, echoing the broad phenotypic associations previously observed in
large-scale ECG studies.

Visualizing the learned prototype vectors revealed that the model’s latent space struc-

ture mirrors key dimensions of clinical reasoning. In the rhythm branch, principal compo-
nents aligned with heart rate and rhythm type—two foundational axes of ECG interpretation.
Prototypes for sinus bradycardia, supraventricular tachycardia, atrial fibrillation, and paced



rhythms were arranged along these axes in a manner that reflected their expected physiological
and clinical relationships. Similarly, in the 2D morphology branch, prototypes for posterior
myocardial infarctions clustered with right-sided conduction abnormalities, while ischemic
syndromes grouped with ST depressions and T-wave inversions. These patterns suggest that,
even without explicit supervision for phenotypic structure, the model organizes its internal
representations to reflect established axes of clinical reasoning used in ECG interpretation.

Moving forward, several promising research directions emerge from this foundation. Fu-
ture work should focus on developing systematic approaches for optimal prototype selection
and grouping strategies/!2Y potentially incorporating clinical expertise to ensure the most
interpretable and clinically relevant representations. User studies involving cardiologists and
trainees could evaluate how prototypes affect diagnostic accuracy and learning efficiency, po-
tentially informing adaptive educational tools. Additionally, expanding this framework to
incorporate temporal dynamics and multi-modal physiologic signals could enhance the rich-
ness of learned phenotypes. Prospective validation studies in diverse clinical settings would be
essential to establish the generalizability and real-world utility of these digital biomarkers.

Several limitations of the current work warrant acknowledgment. The retrospective na-
ture of our analysis limits causal inference about the relationships between ECG prototypes
and clinical outcomes. Additionally, the absence of expert ECG annotations in MIMIC-IV
prevented direct validation of our prototype interpretations against gold-standard clinical
assessments. The smaller sample size in MIMIC-IV compared to previous large-scale ECG
phenotyping studies may have limited our power to detect associations with rarer conditions.
Furthermore, potential dataset shift between the training (PTB-XL) and inference (MIMIC-
IV) populations, including differences in patient acuity and clinical settings, may affect the
generalizability of our findings. Finally, while our approach demonstrates the potential for
interpretable digital phenotyping, the clinical implementation of such models would require
careful consideration of regulatory requirements, workflow integration, and ongoing validation
in real-world clinical environments. Despite these limitations we believe this work demonstrates
an extremely promising direction to better incorporate physiological data into phenotyping
pipelines even where task-specific gold-standard labels are not available.
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