9 Open

Original Investigation | Health Informatics

Diagnostic Codes in Al Prediction Models and Label Leakage

of Same-Admission Clinical Outcomes

Bashar Ramadan, MBBS; Ming-Chieh Liu, MS; Michael C. Burkhart, PhD; William F. Parker, MD, PhD; Brett K. Beaulieu-Jones, PhD

Abstract

IMPORTANCE Artificial intelligence models that predict same-admission outcomes for hospitalized
patients, such as inpatient mortality, often rely on International Classification of Diseases (ICD)
diagnostic codes, even when these codes are not finalized until after discharge.

OBJECTIVE To investigate the extent to which the inclusion of ICD codes as features in predictive
models are associated with inflated performance metrics via label leakage (eg, including the code for
cardiac arrest into an inpatient mortality prediction model) and assess the prevalence and
implications of this practice in existing literature.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study examined publicly available,
deidentified inpatient electronic health record data from the Medical Information Mart for Intensive
Care IV (MIMIC-1V) database. Patients admitted to an intensive care unit or emergency department
at Beth Israel Deaconess Medical Center between January 1, 2008, and December 31, 2019, were
included. These data were analyzed between December 18, 2024, and January 14, 2025. A targeted
literature review of same-admission prediction models using MIMIC with /CD codes as features was
performed between November 20 and 27, 2024.

MAIN OUTCOME AND MEASURES Using a standard training-validation-test split procedure,
prediction models were developed for inpatient mortality (logistic regression, random forest, and
XGBoost) using only ICD codes as features. Performance in the test set was analyzed using areas
under the receiver operating curve and variable importance. Frequencies of studies using same-
admission prediction models using MIMIC with ICD codes were calculated from the targeted
literature review.

RESULTS The study cohort consisted of 180 640 patients (mean [SD] age at admission, 58.7 [19.2]
years; 53.0% female), of whom 8573 (4.7%) died during the admission. The models using ICD codes
predicted in-hospital mortality with high performance in the test dataset, with areas under the
receiver operating curve of 0.976 (95% Cl, 0.973-0.980) (logistic regression), 0.971(95% Cl, 0.967-
0.974) (random forest), and 0.973 (95% Cl, 0.968-0.977) (XGBoost). The most important /CD codes
were subdural hemorrhage (OR, 389.99; 95% Cl, 28.79-5283.59), cardiac arrest (OR, 219.58; 95%
Cl,159.61-302.08), brain death (OR, 112.78; 95% Cl, 13.42-947.70), and encounter for palliative care
(OR, 98.04; 95% Cl, 83.16-115.58). The literature review found that 37 of 92 studies (40.2%) using
MIMIC to predict same-admission outcomes included ICD codes as features, even though both
MIMIC publications and documentation clearly state that ICD codes are derived after discharge.
CONCLUSIONS AND RELEVANCE This prognostic study of the MIMIC-1V database suggests that
using ICD codes as features in same-admission prediction models may be a severe methodological
flaw associated with inflated performance metrics, rendering models incapable of clinically useful
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Abstract (continued)

predictions. The literature review found that the practice is common. Addressing this challenge is
essential for advancing trustworthy artificial intelligence in health care.

JAMA Network Open. 2025;8(12):2550454. doi:10.1001/jamanetworkopen.2025.50454

Introduction

Artificial intelligence (Al) and machine learning models have shown impressive performance in
predicting critical same-admission outcomes, such as in-hospital mortality."® Some models use
International Classification of Diseases (ICD) diagnostic billing codes as input features. Since ICD
codes are entered in the electronic health record (EHR) after a clinical event, can be revised over the
course of an admission, and are finalized only after discharge, their inclusion introduces data leakage,
in which information unavailable in deployed clinical settings is improperly used during model
training and evaluation.

There are many published examples of machine learning models in health care achieving
unrealistic performance by relying on unintended features, a phenomenon termed shortcut
learning.*® In this work, we specifically examined the issue of temporal label leakage, as described
by Davis et al,® in which model inputs are used before they are actually available. For example,
imagine a patient admitted with unspecified abdominal pain. After further evaluation, the patient is
diagnosed with appendicitis, develops septic shock, and experiences cardiac arrest several days later
before dying. Early in the patient’s admission, only unspecified abdominal pain would be available.
However, if a model incorporates all ICD codes subsequently assigned after the end of a hospital stay,
it unfairly leverages hindsight information to predict mortality, achieving deceptively high accuracy.

This work aimed to illustrate how seemingly accurate same-admission prediction models may
be driven by leakage and to quantify how frequently such leakage appears in the literature on
machine learning for health care. To examine outcomes associated with this problem, we performed
2 analyses. First, we use ICD codes in models predicting inpatient mortality, one of the most common
same-admission prediction tasks. Second, we performed a targeted literature review of studies that
have built Al models to predict inpatient outcomes and identified the percentage of those that
included ICD codes from the same admission as input features.

Methods

Data Source and Study Population
This prognostic study used the Medical Information Mart for Intensive Care IV database (MIMIC-1V),
version 2.2,'° a publicly available, deidentified, EHR database of patients admitted to an intensive
care unit (ICU) or emergency department at Beth Israel Deaconess Medical Center between January
1,2008, and December 31, 2019. The MIMIC-IV database is a large, freely accessible EHR resource
released in deidentified form, with dates shifted and other deidentification safeguards applied per
Health Insurance Portability and Accountability Act deidentification standards. Because the research
used only deidentified data and involved no interaction with individuals, no access to identifiable
private information, and no intervention, it did not constitute human participants research under the
Common Rule and, therefore, did not require institutional review board review or informed consent.
Access to the MIMIC data followed standard credentialing requirements and data use agreement.
This study followed the Transparent Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis and Al (TRIPOD+AI) and Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) reporting guidelines.

All admissions with ICD codes were included in our study, with less than 1% excluded. The
MIMIC-IV dataset categorizes race and ethnicity data of admitted patients as Asian, Black, Hispanic,
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White, other, or unknown, which are reported herein for descriptive purposes.'® We partitioned the
dataset by the date of admission into train (70%), validation (10%), and test (20%) sets per
TRIPOD+AI guidelines,” excluding patients from the validation and test sets who also had admissions
in the training set. Because our cohort spans the US transition from The International Classification
of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) to the International Statistical
Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) (October 1, 2015), we
mapped all ICD-10-CM diagnoses to ICD-9-CM using the Centers for Medicare & Medicaid Services
General Equivalence Mappings to harmonize the code space across years; the additional granularity
of ICD-10-CM was not required for our aims focused on leakage. We also removed /CD codes that had
low variance (<0.0001) or high covariance (>0.8) with other ICD codes.

ICD Code Prediction Model Development and Evaluation

We trained classification models (logistic regression,'? random forest,'? and XGBoost'®) using only
ICD-9 codes as features, tuning hyperparameters in the validation set. We chose these models
because they are some of the commonly used classifiers, achieve strong performance with tabular
data, and offer approaches to interpret models. Other predictive features, such as vital signs,
laboratory values, and medications, were intentionally excluded to examine only the potential for ICD
code-driven label leakage. The trained models were then evaluated on the held-out test set, with
performance assessed using the area under the receiver operating characteristic curve (AUROC) and
balanced accuracy.

Targeted Literature Review

To assess the pervasiveness of this issue, we performed a targeted literature review of studies that
used either MIMIC-11l or MIMIC-IV. To do so, we used Google Scholar between November 20 and 27,
2024, with 2 search queries (case insensitive): (1) prediction model machine learning mimic-1vV OR
mimic IV OR mimic 4 OR mimic-4 and (2) prediction model machine learning mimic-1ll OR mimic /Il OR
mimic 3 OR mimic-3. We sorted results by citations per year to avoid bias against recently published
studies and screened them sequentially until we identified 100 prediction modeling studies (50 each
for MIMIC-111"* and MIMIC-IV'©). We then performed a manual review of the articles to (1) categorize
whether the studies predicted clinical events during the same admission and (2) investigate whether
ICD codes were used as input features to predict an outcome during that same admission.

Statistical Analysis

We calculated odds ratios (ORs) and P values for ICD codes in the logistic regression model and
applied the Benjamini-Hochberg procedure to control for false discovery rate, with a threshold of

P < .05. For the random forest and XGBoost models, we assessed feature importance with each
library's respective default criterion, namely Gini importance and gain, to identify which ICD codes
were considered important for the prediction task. The analysis was performed between December
18,2024, and January 14, 2025, using Python, version 3.10 (Python Software Foundation) with the
packages numpy, version 2.0.2; pandas, version 2.2.2; scikit-learn, version 1.4.2; scipy, version 1.13.0;
shap, version 0.46.0; statsmodels, version 0.14.2, and xgboost, version 2.0.3. The full source code
is available on Github."

Results

ICD Code-Based Prediction Models

The study cohort included 422 534 hospital admissions from 180 640 unique patients (mean [SD]
age at admission, 58.7 [19.2] years; 53.0% female and 47.0% male; 3.5% categorized in MIMIC-IV as
Asian, 16.2% as Black, 5.9% as Hispanic, 67.2% as White, 4.1% as other, and 3.3% as unknown race
and ethnicity). In-hospital mortality occurred in 8417 admissions (2.0%). In the held-out test set, all 3
models achieved high predictive performance, with AUROCs of 0.976 (95% Cl, 0.973-0.980)
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(logistic regression), 0.971(95% Cl, 0.967-0.974) (random forest), and 0.973 (95% Cl, 0.968-0.977)
(XGBoost) (Figure 1A; eFigure in Supplement 1). These results are even better than published models
trained on the same data that also included many additional predictive features from the rest of

the EHR.1?

The Table highlights the 20 diagnostic codes with the highest ORs used by the logistic
regression model. Complete logistic regression feature results are available in eTable 2 in
Supplement 2. All codes were statistically significant after the Benjamini-Hochberg procedure (P <
.05). Acute diagnoses typically arose during hospitalization and dominated the list, such as subdural

Figure 1. Model Predictive Performance and Feature Importance for Predicting In-Hospital Mortality

IE AUROC for in-hospital mortality E XGBoost feature importance

1.0+
Do not resuscitate status
Acute respiratory failure
0.8+ Cardiac arrest
Encounter for palliative care
% 0.6- Fracture, scapula, glen cav/nck-cl
4
:E Compression of brain
5
o
> Subarachnoid hematoma, brief coma
<
S 0.4+
= Spinal stenosis NOS
Class-balanced logistic regression
Random forest Fracture, neck of femur NOS-cl
0.24 XGBoost Abnormal reaction-procedure NOS
Random guess
Severe sepsis
0 . . . . . Ventricular septal defect
0 0.2 0.4 0.6 0.8 1.0

False-positive rate No procedure/patient decision

Cardiogenic shock

Random forest feature importance

Encounter for palliative care
Do not resuscitate status
Septic shock

Acute respiratory failure
Acidosis

Pneumonia, organism NOS
Acute necrosis of liver

Food/vomit pneumonitis

Acute respiratory failure following
trauma or surgery

Physical restraints status
Unspecified septicemia
Cardiac arrest

Acute kidney failure, tubr necr
Acute kidney failure NOS
Cardiogenic shock
Hyperosmolality

Cerebral edema

Intracerebral hemorrhage
Anoxic brain damage

Severe sepsis

0 0.02 004 0.06 008 0.10 0.12 0.14
Importance

Retroperitoneum injection-cl
Gen noncv ep w/o intr ep
Superficial injury of cornea
Subdural hemorrhage, coma NOS
Stomach function disease NEC

Intracerebral hemorrhage

I T
0 0.0025

T
0.0075
Importance

T
0.0125

1
0.0175

A, Shading indicates the 95% CI. AUROC indicates area under the receiver operating
characteristic curve; cl, closed; gen noncv ep w/o intr ep, generalized nonconvulsive
epilepsy without mention of intractable epilepsy; glen cav/nck, glenoid cavity and the

scapular neck; NEC, necrotizing enterocolitis; NOS, not otherwise specified; tubr necr,

tubular necrosis.
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hematoma, deep coma (OR, 389.99; 95% Cl, 28.79-5283.59); cardiac arrest (OR, 219.58; 95% Cl,
159.61-302.08); brain death (OR, 112.78; 95% Cl, 13.42-947.70); and encounter for palliative care (OR,
98.04; 95% Cl, 83.16-115.58), all of which carry an obvious high risk of mortality. The additional
features included rare diagnoses and symptoms that occurred in cases more often than controls
within this dataset.

Feature importance analyses from the random forest and XGBoost models (Figure 1B) found ICD
codes for do not resuscitate status (random forest rank, 2nd; XGBoost rank, 1st), acute respiratory
failure (random forest rank, 4th; XGBoost rank, 2nd), and encounter for palliative care (random forest
rank, 1st; XGBoost rank, 4th) to be powerful predictors of mortality. In addition to ICD codes that
obviously represent label leakage (eg, brain death), the diagnosis superficial injury to the cornea was
the 17th most important feature to the XGBoost model, which stood out as it is not an acute
diagnosis. This anomaly may be associated with the model's ability to detect a clinician’s focus on
documenting less severe conditions, signaling relative patient stability and, therefore, low
mortality risk.

Literature Review

Figure 2 outlines our study-screening process. We reviewed 100 studies that built a prediction model
from aninitial set of the 140 citing MIMIC and sorted them in descending order by the mean number
of citations per year (the full list is provided in eTable 1in Supplement 1).6"> Of these articles,

92 (92.0%) reported building predictive models that targeted outcomes within the same
admission, 719 21-60.62:65,6779,82:92,94-107.109M2 3nq among those, 37 (40.2%) used ICD diagnostic

codes as input featUreS.W' 21,22,26,30,34,35,38,40-43,47,49,50,58-60, 68,70,71,75,78, 83,84, 87,90, 92,97-99,102,

103,107,109, 111,115

Table. Top 20 Features in the Logistic Regression Model

Adjusted
Feature OR (95% Cl) P value?®
Subdural hemorrhage, deep coma 389.99 (28.79-5283.59) <.001
Cardiac arrest 219.58(159.61-302.08) <.001
Brain death 112.78 (13.42-947.70) <.001
Encounter for palliative care 98.04 (83.16-115.58) <.001
Transient visual loss 96.12 (45.58-202.69) <.001
Kidney sclerosis, unspecified 69.83(43.92-111.03) <.001
Unspecified intracranial hemorrhage 59.52 (32.96-107.48) <.001
Acute maxillary sinusitis 37.24(12.36-112.17) <.001
Chronic glomerulonephritis with unspecified pathologic 36.30(15.77-83.56) <.001
lesion in kidney
Subarachnoid hemorrhage following injury without 32.08 (2.23-461.70) .04
mention of open intracranial wound, with prolonged
(>24 h) loss of consciousness without return to
preexisting conscious level
Abdominal aneurysm, ruptured 30.90 (14.75-64.72) <.001
Postoperative shock, cardiogenic 28.64 (15.67-52.37) <.001
Influenza due to identified avian influenza virus with other  26.00 (11.72-57.69) <.001
respiratory manifestations
Other abnormality of urination 25.95(13.06-51.54) <.001
Intracerebral hemorrhage 25.85(21.83-30.60) <.001
Nonpressure chronic ulcer of other part of right foot with 25.70(6.97-94.78) <.001
other specified severity
Ulcer of thigh 22.75(9.76-53.02) <.001
Acute myeloid leukemia, in relapse 21.79(13.21-35.94) <.001
Vi'ral hepatitis_ B with hepa_t_ic coma, acute or unspecified, 21.68(7.21-65.18) <.001
without mention of hepatitis delta Abbreviation: OR, odds ratio.
Unspecified drug dependence, unspecified 20.96 (7.81-56.27) <.001

2 Benjamini-Hochberg correction.
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Discussion

This prognostic study found that a specific problem within the machine learning health care literature
may be the presence of data leakage in same-admission prediction models associated with the
inclusion of diagnostic codes as input features. These codes, finalized only after discharge, provide
models with hindsight information that would not be available at the time of prediction. This practice
causes 2 distinct and serious problems. First, codes that clinicians document in the EHR after a clinical
encounter cannot be used to guide real-time clinical decision making during that encounter. Second,
asubset of these codes (eg, brain death for inpatient mortality) document highly correlated events
with the outcome being predicted. This issue underscores a broader concern that machine learning
models trained with retrospective data risk misrepresenting their value in actual clinical care. If these
models do not account for the realities of real-time clinical workflows, their success in research will
not translate into meaningful improvements in patient outcomes.

Both MIMIC-I1l and MIMIC-1V carry explicit warnings against using an admission’s ICD codes to
predict outcomes from that same admission. In MIMIC-11I, ICD-9 codes arise from patient
discharges,"* while MIMIC-IV clarifies that diagnoses are determined by trained professionals after
reviewing signed patient notes.'® These datasets do not provide an audit log of changes or updates
to ICD codes but, instead, provide only the final set of ICD diagnoses. Given the prevalence of ICD
code use in MIMIC-based studies despite this direct guidance, we suspect that publications on
private institutional data, especially those that do not share source code, could potentially be even
more likely to be compromised by label leakage.

Researchers aim to harness available knowledge to the greatest extent possible when training
models, and there is a reasonable expectation that some diagnoses are known to clinicians shortly
after admission (eg, broken limbs, burns). Some information could potentially be gleaned from
patient notes or physician problem lists that may be available during a patient’s stay. Often, codes are
carried over from previous visits, eg, chronic conditions or comorbidities such as diabetes and
hypertension, and these can safely be assumed as known. However, diagnoses in the form of ICD
codes for a given admission in MIMIC are explicitly derived after discharge. In other datasets, it may

Figure 2. Overview of Targeted Literature Screening and Review

140 Articles identified via search
73 MIMIC-IV
67 MIMIC-11I

4>‘ 12 Duplicates removed

‘ 128 Sought for retrieval ‘

4>‘ 6 Not retrieved

‘ 122 Screened for building a predictive model ‘

4>‘ 22 Did not build a predictive model

‘ 100 Screened for same-admission prediction ‘

4>‘ 8 Did not perform same-admission prediction

‘ 92 Screened for use of ICD codes as input features ‘

—»‘ 55 Did not use ICD codes as input features

‘ 37 Included ‘

The screening involved searching and filtering studies
citing Medical Information Mart for Intensive Care Il
(MIMIC-111) or MIMIC-1V, developing a prediction
model, performing same-admission predictions, and
using International Classification of Diseases (ICD)
codes as input features.
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be possible to use ICD codes without label leakage if these codes are time-stamped and derived from
problem lists. However, there are still substantial limitations given that these codes are used for
billing purposes and represent clinical thinking as opposed to patient state.>

Both analyses in this study have a scope limited to the MIMIC dataset. However, thousands of
studies have used data from the MIMIC database'®* for a wide variety of tasks, including the portion
incorporating ICD codes for same-admission prediction tasks identified in this study. While it is not
possible to quantify this issue for private or institutional datasets, we suspect that similar issues may
be at least as prevalent in analyses on less transparent and thoroughly documented datasets. The
MIMIC database is well described, with detailed publications, well-developed documentation, and
example code for analyses. Institutional and private datasets generally have less transparency and do
not allow for reproducibility, reflecting a broader challenge in health care machine learning research.®
That label leakage occurs this often in a well-defined dataset that explicitly describes the nature of
ICD codes should raise questions when evaluating research using less transparent datasets
and methods.

A solution to the problem of temporal label leakage is to diligently examine the input features
to ensure that these features are truly available at the time of prediction, which could be a
challenging problem in health care due to the complicated nature of data generation. For example,
present-on-admission flags seem like an easy way to decide whether an ICD code could be used in
same-admission prediction. In reality, the Centers for Medicare & Medicaid Services states that
“subsequent to the assignment of the ICD-10-CM codes, the [present-on-admission] indicator should
then be assigned to those conditions that have been coded.”"® There are many examples of apparent
timestamps, which are actually imperfect proxies for when information is known because of the way
documentation lags clinical reality. Accordingly, our recommendation is to ensure that model
developers are only using data based on the EHR storage time as opposed to either making
assumptions about availability or using other timing information. Model developers could visualize
the passage of time with patient timelines based on the EHR storage time to emulate the clinical
deployment of prediction models. It is critical for research teams to work with clinical domain
experts, as well as information technologists and informaticians, to understand the meaning of
different timestamps in clinical data. We advise defining the prediction time point a priori and, for any
candidate variable, establishing whether it is truly known by that moment through provenance
review and clinician or domain-expert input. We also recommend that articles include a brief variable
availability statement that names the source and timing assumptions for each variable class and
explains how those assumptions align with the intended clinical use.

The utility of ICD codes geared at billing for deployable prediction models is debatable, but at a
minimum, researchers need to be careful to ensure that the codes are available prior to the time a
prediction needs to be made. Ensuring codes would be available may require only using codes from
prior admissions, which still requires ensuring that they are not edited during any adjudication
processes with payers or deriving these diagnoses from a time-stamped problem list. The MIMIC
database, however, does not include either timestamps or codes from the problem list. The
frequency of this error suggests a need for researchers to more closely read the documentation of
third-party datasets. While it is not possible to estimate how frequently this issue occurs in private,
institutional datasets, we believe that the frequency also suggests a need for greater engagement of
prediction model developers with experts covering the full data generation (clinicians) and
preparation (eg, informaticians and data warehousing teams) process.

Limitations

This study had some limitations. The scope was limited to studies that used the MIMIC-I1l and
MIMIC-IV datasets. Our findings suggest a clear problem within this subset of the literature but did
not provide direct evidence of whether or how frequently this issue occurs in studies that used
private or other institutional datasets. Furthermore, this analysis did not account for potential
differences between MIMIC and private institutional data, which may have different coding practices,
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data structures, or documentation. While we suspect that similar or greater challenges may exist in
less transparent datasets because of their less transparent nature, it is not possible to empirically test
this. Thus, this study includes no findings to support that assertion. Any generalization of our findings
beyond the MIMIC-based literature would require further investigation.

Conclusions

This prognostic study of patient data in the MIMIC-IV database found that using ICD codes as features
in same-admission prediction models may be a severe methodological flaw that inflates performance
metrics and renders models incapable of making clinically useful predictions in real time. Our
literature review found that the practice is common. Addressing this challenge is essential for
advancing trustworthy Al in health care.
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