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Abstract 
 
Brain–computer interfaces have enabled people with paralysis to control computer cursors, 
operate prosthetic limbs, and communicate through handwriting, speech, and typing. Most 
high-performance demonstrations have used silicon microelectrode "Utah" arrays to record brain 
activity at single neuron resolution. However, reports so far have typically been limited to one or 
two individuals, with no systematic assessment of the longevity, decoding accuracy, and 
day-to-day stability properties of chronically implanted Utah arrays. Here, we present a 
comprehensive evaluation of 20 years of neural data from the BrainGate and BrainGate2 pilot 
clinical trials. This dataset spans 2,319 recording sessions and 20 arrays from the first 14 
participants in these trials. On average, arrays successfully recorded neural spiking waveforms 
on 35.6% of electrodes, with only a 7% decline over the study enrollment period (up to 7.6 years, 
with a mean of 2.8 years). We assessed movement intention decoding performance using a 
"decoding signal-to-noise ratio" (dSNR) metric, and found that 11 of 14 arrays provided 
meaningful movement decoding throughout study enrollment (dSNR > 1). Three arrays reached 
a peak dSNR greater than 4.5, approaching that achieved during able-bodied computer mouse 
control (6.29). We also found that dSNR increases logarithmically with the number of electrodes, 
providing a pathway for scaling performance. Longevity and reliability of Utah array recordings 
in this study were better than in prior nonhuman primate studies. However, achieving peak 
performance consistently will require addressing unknown sources of variability. 
 
Introduction  
 
Brain-computer interfaces have emerged as a promising approach for restoring movement and 
communication to people with paralysis. Successful demonstrations have included 
point-and-click cursor control (Jarosiewicz et al. 2015; Pandarinath et al. 2017), robot control 
(Hochberg et al. 2012; Collinger et al. 2013; Benabid et al. 2019), functional electrical 
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stimulation (Ajiboye et al. 2017), typing (Willett et al. 2021; Vansteensel et al. 2016, 2024; Shah 
et al. 2024; Jude et al. 2025), and speech (Moses et al. 2021; Willett et al. 2023; Metzger et al. 
2023; Card et al. 2024; Wairagkar et al. 2025). Many of the highest performing demonstrations 
to date have used silicon microelectrode arrays (the “Utah” array) to record brain activity at 
single neuron resolution (Collinger et al. 2013; Pandarinath et al. 2017; Willett et al. 2021; Card 
et al. 2024; Wairagkar et al. 2025), providing rich information about the user’s motor intent. 
However, nearly all reports in humans have been limited to case studies of one or two 
participants, including those that have focused on summarizing array recording performance over 
time (Simeral et al. 2011; Downey et al. 2018; Sponheim et al. 2021; Colachis et al. 2021; 
Hughes et al. 2021). Key questions remain about how decoding accuracy varies across 
individuals, how long neural recordings last over years, and how stable the recordings are across 
days. Answers to these questions are needed to place isolated demonstrations into context and 
understand whether they represent typical signal quality. A more comprehensive evaluation of 
the Utah array can also set a benchmark against which improvements can be measured, 
informing the design of future recording devices.  
 
Here, we present a post-hoc analysis of neural recording and motor decoding performance of the 
Utah array in the first 14 participants enrolled in the BrainGate and BrainGate2 pilot clinical 
trials between 2004 and 2019 (constituting all available participants at the time when this 
analysis was started, but not including more recent participants enrolled between 2021 and 
2025). Encouraging safety results from these same 14 participants were recently reported in an 
interim study (Rubin et al. 2023). Like prior assessments in nonhuman primates (Suner et al. 
2005; Chestek et al. 2011; Barrese et al. 2013; Sponheim et al. 2021), here we evaluated the 
percentage of electrodes which successfully recorded neural spiking waveforms over time (array 
“yield”). Additionally, since most arrays were placed in the same brain region (hand knob area of 
motor cortex) and all participants regularly engaged in BCI-enabled cursor control tasks, we 
were able to compare neural decoding quality across the 9 participants for which high-bandwidth 
(30 kHz) neural data was available. We assessed the stability of neural tuning over time, how 
cursor decoding accuracy compares to mouse movement accuracy in able-bodied volunteers, and 
how decoding accuracy scales with the number of electrodes (which is important for 
understanding how higher channel count devices might improve decoding). These functional 
measurements are more directly relevant for BCI applications than array yield, particularly 
because low-amplitude background activity can be highly useful for neural decoding even if it 
fails to generate clear spiking waveforms (Nason et al. 2020). 
 
Results 
 
Between 2004 and 2019, 14 participants were enrolled in the BrainGate and BrainGate2 pilot 
clinical trials; each participant had one or two 96-channel platinum-metalized Utah 
microelectrode arrays placed in cortex. Nineteen of the total twenty arrays were placed in the 
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hand area of motor cortex (Figure 1A, B), with one array placed in the middle frontal gyrus. The 
BrainGate and BrainGate2 clinical trials were designed to evaluate the safety of implanted 
microelectrode arrays and to discover fundamental insights into the effective design of 
intracortical BCIs. Testing new neural decoding architectures and task designs was common 
throughout the trials, and as such it is not feasible to summarize across all types of data collected.  
 
To summarize findings spanning 14 participants over 15 years, here we curated two types of 
datasets: (1) a “yield dataset” containing a single neural recording of at least 5 minutes duration 
from every research session, which was used to estimate array yield (Figure 1D), and (2) a 
“decoding dataset” consisting of all neural recordings during which a BCI was used to move a 
computer cursor towards well-defined targets (Figure 1E), which was used to estimate neural 
decoding accuracy, neural tuning stability and electrode count scaling properties. This dataset 
consists of a more limited number of days and participants, because not every experimental 
session included BCI cursor control, and because for the first 5 participants high bandwidth 
neural data (30 kHz) was either not recorded during cursor control (S1, S2, A1), not recorded for 
the first year post-implant (S3), or could not be consistently aligned to cursor task data (T1). 
Note that prior publications have shown successful demonstrations of neural cursor control in S1 
and S2 (Hochberg et al. 2006), S3 (Kim et al. 2008; Simeral et al. 2011; Jarosiewicz et al. 2013; 
Bacher et al. 2015; Jarosiewicz et al. 2015), A1 (Kim et al. 2008), and T1 (Jarosiewicz et al. 
2013). 

 
 
Fig. 1 | Datasets curated for assessing recording and decoding performance.  
(A) One or two 96 channel intracortical microelectrode arrays were placed in the cortex of 14 participants as part of 
the BrainGate and BrainGate2 clinical trials. 19 of 20 arrays were placed in the hand knob area of the dominant 
precentral gyrus (B), and one was placed in the middle frontal gyrus of Participant T10.  (C) Example spike 
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waveforms. For this study, 30 Khz recordings were decimated to 15 Khz, band pass filtered with a pass band of 
250-5000 Hz, re-referenced with linear regression referencing (LRR) and thresholded at -4.5 times the robust 
standard deviation of the voltage signal for each channel. (D) To assess decoding performance, we retrospectively 
analyzed sessions in which participants were asked to attempt to move a computer cursor towards a defined target. 
Imagery varied between sessions and participants. Tasks included Fitts, Radial-8, grid tasks and their variations. To 
assess array recording yields, data from all types of sessions were used (including sessions where no cursor control 
occurred). (E) Example cursor trajectories for a Radial-8 task. (F) Overview of recording duration and sessions 
analyzed. Total array implant days ranged from 296 to 2780 with a mean of 1063. After excluding sessions with 
excessive electrical noise, 2,319 recording sessions and 634 decoding sessions were analyzed. T10’s middle frontal 
gyrus array was only used for recording evaluation, as it was in a different brain area with neural tuning properties 
not comparable to the hand knob area. High bandwidth neural data (30 kilo-samples per second) required for 
retrospectively evaluating decoding performance in a uniform manner were not consistently available for 
participants S1, S2, S3, A1, and T1, and so these participants were not included in decoding analyses.  
 
Neural spiking activity persists for multiple years with little average decline 
 
We first investigated how the number of electrodes able to detect spiking activity (“yield”) 
changed over time, looking across a total of 2,319 recording sessions. Spiking activity was 
defined as the detection of at least 2 spiking events per second when using a  threshold of -4.5 
times the robust standard deviation of the voltage signal (see Methods). We observed substantial 
variability across 20 arrays in 14 different participants (Figure 2A), with some arrays sharply 
declining in yield within the first year (S2, S3 and T2) or having consistently low yield (T3), 
some arrays increasing over time (T7, T8), and many arrays staying relatively constant or 
gradually declining over time (e.g., T5, T6, T10, T11). Yield trajectories in the first year were not 
always predictive of yields over longer periods (e.g., T7’s medial array increased in yield after 
the first year). Yield curves were estimated using locally weighted scatterplot smoothing 
(LOWESS)(Cleveland 1979). Although the cause of S2 and T2’s sudden declines in yield are not 
known, S3’s decline coincided with and may have been triggered by mechanical trauma to the 
pedestal that occurred outside of research study sessions. T3’s array, which had a consistently 
very low yield, was believed to have had its wire bundle unintentionally placed under tension 
during surgery, which could have resulted in the recording tips being largely epicortical rather 
than intracortical.  
 
Averaged over all days, participants, and arrays, mean array yield (percentage of electrodes 
recording spiking activity) was 35.6%. Arrays experienced only a modest 7% average decline in 
yield between the first 3 months of recording and the last three months of recording (Figure 2B; 
41% yield in the first three months to 34% yield in the last three months). However, there was 
large variability in yield across arrays (standard deviation: 20.5%). A minority of arrays in a 
subset of participants contributed substantially to this variability, including the three arrays that 
showed a sharp decrease in yield over the first year (S2, S3, and T2; Figure 2C). Overall, results 
were favorable compared to prior work in nonhuman primates, with over 50% of arrays 
maintaining at least 20% yield over the first three years (Figure 2D; compare to Sponheim et al. 
2021, where less than 15% of arrays maintained a 20% yield). This demonstrates the potential of 
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long-term, reliable detection of neural spike waveforms with planar microelectrode arrays in 
humans. 

 
Fig. 2  | Long-term trends in neural spiking activity recording performance. 
(A) Array yield over the recording duration of twenty 96-channel microelectrode arrays. Each point represents the 
number of electrodes detecting spiking activity in a single neural recording of 5 minutes duration or longer (one 
recording per session). Spiking electrodes are defined as electrodes detecting a threshold crossing rate greater than 2 
Hz when using a -4.5 x robust standard deviation threshold (see Methods). LOWESS curves are shown in black. For 
participants with two arrays, data points in the lighter shade represent the more medial array. Implant date is 
indicated above each participant panel. Participant S2’s array experienced a steep increase in yield after repair of the 
percutaneous pedestal (day 190) which placed conductive epoxy on each bond site to restore connections. Months 
later, array yield declined sharply again (day 323), and it is unknown whether this was due to failure of the previous 
repair or an unrelated event. Participant S3 experienced an accidental forceful contact of the pedestal against her 
headboard on the evening of day 181, with a decrease in yield that slowly, partially recovered. (B) Overall deltas in 
yield. Deltas were calculated by taking the mean number of spiking electrodes in sessions recorded during the last 3 
months post implant and subtracting the mean number of spiking electrodes recorded during the first 3 months of 
recording. (C) 6 month deltas in yield, up to six and a half years post-implant. Each point represents the mean 
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spiking electrode count over a 6 month period minus the mean spiking electrode count over the previous six month 
period. The red line plots the mean of deltas. Outliers are labeled, with participant T2, S2, and S3 all experiencing a 
steep decline. (D) Array proportions exceeding a certain yield over the first 3 years of recording. If data was not 
recorded from an array during a certain time period, that array was  not included in the calculation for that time 
period.  
 
We also examined electrode impedance and found that it increased sharply post-implant, 
followed by a consistent and gradual decline (Supplementary Figure 1) consistent with prior 
reports (Barrese et al. 2013; Barrese, Aceros, and Donoghue 2016). Spike waveform amplitude 
and background noise amplitude also declined over time (Supplementary Figure 2A-B), and 
smaller waveform amplitudes were associated with lower impedance values (Supplementary 
Figure 2C). Since both the spike waveform and background noise amplitudes declined at similar 
rates, the waveform signal-to-noise ratio remained relatively constant over time (Supplementary 
Figure 2D). This overall decline in signal amplitude and impedance may be due to insulation 
degradation (Barrese et al. 2013; Barrese, Aceros, and Donoghue 2016), particularly around the 
edges of the planar array where low impedances were sometimes observed progressively over 
time (e.g., T2, T3, T5, T6; Supplementary Figure 3). Nevertheless, these changes did not appear 
to affect detection of spiking signals or decoding performance (see next section). 
 
Movement intention can be decoded reliably for years in most arrays  
 
Next, we examined the extent to which cursor movement intention could reliably be decoded 
from intracortical recordings, how decoding varied across arrays, and how it compared to the 
accuracy of able-bodied cursor control using a computer mouse. A total of 634 sessions across 
14 arrays and 9 participants were analyzed to evaluate movement intention decoding during 
closed loop cursor control tasks (Figure 1F).  
 
To evaluate the amount of intended movement information in the neural signals recorded by an 
array, we quantified how well an offline linear decoder could transform neural activity into a 
“movement intention” unit vector pointing from the cursor to the target, using neural features 
from a short time window at the beginning of each movement. The decoder output from each 
trial can be visualized as a dot in 2D space and colored according to the ground truth direction; 
the more accurate the decoder is, the more the dots should form a tight ring whose colors form an 
orderly gradient (Figure 3A). Accurate decoder output represents movement intention vectors 
that point more accurately at the target with a consistent magnitude, and would thus enable 
higher quality cursor control, given that cursor control algorithms often use linear mappings 
between neural features and cursor velocity (Kim et al. 2008; Gilja et al. 2012; Willett et al. 
2017, Pandarinath, et al. 2017).  
 
To quantify the quality of the offline decoder output, the decoding signal-to-noise ratio (dSNR) 
metric (Willett, Murphy, et al. 2017) decomposes each decoder output vector into a signal and a 
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noise vector (Figure 3A) and takes the ratio of their magnitudes (see Methods). dSNR is 
independent of the particular task parameters, decoding architecture, and signal processing used 
in real-time during data collection, and thus enables meaningful post-hoc comparisons across a 
diversity of datasets that would otherwise not be possible via task performance metrics alone. It 
can also be used to quantify target-directed able-bodied mouse movements (Figure 3B), 
contextualizing the neural dSNR values. To compute dSNR for able-bodied mouse movements, 
we used the endpoint of the computer cursor after an initial “ballistic” center-out cursor 
movement to define  the “decoder output” vector.  
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Fig. 3 | Retrospective assessment of movement decoding signal-to-noise ratio across time.  
(A) Decoding signal-to-noise ratio (dSNR) and example dSNR plots. dSNR is a vector-based, movement intention 
decoding metric that quantifies how well movement intention can be decoded from all electrodes of a given array 
during a target-directed cursor control task. To estimate dSNR, retrospectively computed linear decoder output 
within a 300 ms window is decomposed into a signal component (pointing toward the target) and a noise component 
to calculate a decoding SNR. Each point in the dSNR plots denotes a trial, color coded by target location. Spike 
band power neural features were retrospectively computed in a uniform manner for all participants from whom high 
bandwidth neural recordings were available for analysis. A linear decoder was then trained in a uniform manner to 
decode these neural features, ensuring that results are independent of whatever algorithms were used at the time of 
data collection. (B) Example SNR plots for able-bodied cursor control using a computer mouse. Cursor trajectories 
from an initial push towards the target were used to calculate dSNR (C) Decoding SNR over time. Each point 
represents a dSNR value for one session. LOWESS curves are shown in black for each array. (D) Overall deltas in 
dSNR. Deltas were calculated by taking the mean dSNR  in sessions recorded during the last 3 months post implant 
and subtracting the mean of dSNR recorded during the first 3 months. (E) Decoding SNR distributions. Arrays are 
displayed in implant order. The dotted line indicates mean decoding SNR across 9 able-bodied participants using a 
computer mouse. (F) Decoding SNR and array yield are correlated (r =  0.52, p = 2e-68). When excluding the T6 
array, which had low array yield but high information content in spike band power features, this relationship is more 
pronounced (r = 0.70, p = 9e-133) 
 
There was wide variability in dSNR across participants and arrays (Figure 3C), although on 
average  dSNR increased by 0.34 across the duration of recording (ranging from 1.2 to 7.6 years, 
Figure 3D). Most arrays maintained dSNR values greater than 1, indicating a persistent ability to 
decode meaningful movement intention signals. A minority of arrays had low dSNR at the end of 
first year post-implant and did not recover dSNR over the course of study participation (T2, T3, 
T11 Lateral). High-performing arrays approached able-bodied dSNR values (Figure 3E; T5 
Lateral, T5 Medial, T11 Medial), but typical arrays yielded about 1/3 the dSNR of able-bodied 
computer mouse movement (average computer mouse dSNR=6.29). 
  
dSNR was correlated with array yield (pearson r: 0.52, p: 2.10e-68; Figure 3F), but array yield 
did not fully account for the large variability of decoding performance, in part due to information 
contained in “spike band power” features (e.g. participant T6). The results presented above used 
spike band power features to decode movement intention, since spike band power (power 
contained in the 250-5000 Hz band) can capture low-amplitude spiking signals that might 
otherwise be missed by threshold crossing features. We evaluated how dSNR varied as a function 
of neural features used for decoding, and found that spike band power led to higher performance 
on average as compared to threshold crossing rates, even at lower thresholds (Supplementary 
Figure 5). Overall, these outcomes show that long-term persistence of meaningful decoding 
performance is typical and can occur even at low array yields, although absolute dSNR levels 
can vary widely across participants and arrays. 
 
Neural representations of movement intention remain stable on short time scales 
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Next, we investigated the day-to-day changes in how movement intention is represented in the 
recorded neural activity. Neural tuning stability was analyzed by using a linear encoding model 
to describe how spike band power features were tuned to a movement intention vector that points 
from the cursor to the target. After fitting, model coefficient similarity was assessed by 
correlating the coefficients of models fit on different days (see Methods). Only arrays from the 
decoding dataset where movement intention could be decoded reliably (dSNR >1) were analyzed 
(3 arrays excluded), yielding a total of 593 recording sessions and 11 arrays from 7 participants. 
 

 
Fig. 4  | Stability of neural tuning to movement intention across days. 
(A) Tuning stability heatmaps. A linear encoding model was used to describe neural activity as a function of a 
point-at-target vector that describes the user’s movement intention during a cursor control task. The Pearson 
correlation between model coefficients for each session pair is shown in each (i,j) entry. Blocks of blue color 
indicate time periods of high stability. (B) Tuning stability as a function of day separation. Tuning remains stable on 
the time scale of a month (8 of 11 arrays, r>0.6), which could enable decoders calibrated on prior days to be used on 
future days without requiring re-calibration. Line colors correspond to the heatmap outlines in (a).  
 
Day-to-day tuning correlations exhibited a variety of patterns (Figure 4A), due in part to 
potential changes in motor imagery across days and/or tasks, varying task instructions, and 
variable intervals between consecutive cursor control sessions. Nevertheless, many arrays 
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showed clear regimes of long-lasting tuning stability. Average stability as a function of time 
elapsed (Figure 4B) was generally high within the time span of 1 month (8 of 11 arrays, r>0.6). 
This is encouraging, as short-range stability enables decoders calibrated on prior days to be used 
on future days without requiring user interruption for re-calibration (Card et al. 2024; Wilson et 
al. 2023; Fan et al. 2023; Hosman et al. 2023).  
 
Electrode count scaling provides a pathway to higher performance 
 
Finally, we examined how decoding performance scales with the number of electrodes. We 
computed average dSNR across all cursor control sessions, for each array and participant, as a 
function of electrode count by randomly subsampling from all 96 electrodes (n=500 resamplings 
per electrode count). We found that dSNR scaled as an approximately logarithmic function of the 
number of electrodes, up to 192 electrodes for participants with dual arrays and 96 electrodes for 
participants with a single array (Figure 5). Only arrays providing meaningful movement 
intention decoding (dSNR >1) were evaluated. By linearly extrapolating to 1024 electrodes, a 
subset of arrays (T5 Lateral, T5 Medial, T6, T11 Medial) demonstrated a projected dSNR that 
was 70% or greater than the average computer mouse dSNR observed across 9 able-bodied 
volunteers. These results are supportive of the many ongoing efforts towards higher channel 
count devices (Musk and Neuralink 2019; Sahasrabuddhe et al. 2021; Hettick et al. 2022), 
although it appears that for arrays with lower dSNR values (e.g., T8), many orders of magnitude 
more electrodes would be required to reach able-bodied computer mouse performance. 
 

 
Fig. 5  | Decoding SNR scales logarithmically with electrode count. 
For each array, decoding SNR (dSNR) was assessed using a random subset of electrodes to investigate how dSNR 
varies as a function of electrode count (for each electrode count, dSNR was averaged over 500 random subsets). For 
each single array, electrode counts ranged from 6 to 96. For participants with dual arrays, combined electrode counts 
ranged from 6 to 192. Extrapolated data is represented with a dotted line and combined arrays are represented in 
black. dSNR scales logarithmically with the number of electrodes. Here, for arrays exhibiting higher performance 
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per electrode (e.g., t5, t11), performance approaches able-bodied levels as electrode count is extrapolated up toward 
1024 electrodes. 
 
Discussion  
 
We analyzed the performance of Utah microelectrode arrays placed in the first fourteen 
participants of the longest running clinical trial for implanted brain-computer interfaces. Overall, 
our findings show that Utah arrays typically continue to record neural spiking waveforms for 
years with little average decline, contrary to some prior reports in nonhuman primates (Barrese et 
al. 2013; Sponheim et al. 2021). Even when array yields are low, decoding SNR can still be high 
due to the information contained in spike band power features (e.g., participant T6) (Nason et al. 
2020), and incorporating spike band power features is now standard practice (Willett et al. 2023; 
Card et al. 2024; Gusman et al. 2025). All arrays except two yielded functional movement 
intention signals, and nearly all (11 of 14) did so throughout the duration of study participation. 
Array recordings generally showed higher decoding SNR over the most recent 10 years 
compared to previous arrays (but see T11 Lateral; Figure 3E), possibly reflecting process 
improvements over time. Neural tuning stability was also reasonably high in many arrays 
(correlation > 0.6 for day pairs within a 1-month time span). Good tuning stability allows 
decoders calibrated on a previous day to be used on a new day, reducing or eliminating the need 
for interrupting the user to recalibrate (Jarosiewicz et al. 2015; Sussillo et al. 2016; Wilson et al. 
2023; Fan et al. 2023; Hosman et al. 2023; Card et al. 2024) 
 
Despite favorable results overall, some arrays did fail to consistently produce useful decoding 
signals over time (3 of 14 arrays evaluated for decoding; T2, T3, T11 Lateral; Figure 3A), 
experienced large declines in yield within the first year (2 of 19; S2, S3; Figure 1A) or had 
consistently low yield (4 of 19; S1, T3, T6, T11 Lateral; Figure 1A). Additionally, there was 
substantial variability in decoding quality that was not fully accounted for by yield (Figure 3F). 
While some top performing arrays provided movement intention signals that enabled directional 
decoding comparable to able-bodied computer mouse movements, there was a wide range of 
decoding SNRs, and adding more electrodes to low performing arrays was not projected to 
enable top performance within the range of ~1000 electrodes. To ensure consistently high 
decoding SNR, it may be necessary to discover the underlying factors driving variability in 
signal quality, which could include disease state, underlying injury, implant location, implant 
technique, variability in device manufacture, and foreign body response. 
 
It has been suggested that very late-stage ALS may lead to motor cortical signal loss (Lawyer 
and Netsky 1953; Eisen and Weber 2001; Vansteensel et al. 2024). This study included six 
participants living at the time with ALS (A1, T1, T3, T6, T7, T9), although none reached a 
completely locked-in state. For these participants, array yield was relatively high in some cases 
(A1, T1, T7, T9) and low in others (T3, T6), with no clear relationship to their remaining ability 
to move, speak, or use their eyes for communication. Decoding SNR could not be assessed in A1 
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and T1 (lack of stored high-bandwidth recordings); dSNR was poor in T3 (with low yield) but 
did not appear to decline over time in participants T6, T7 and T9. Although these dSNR and 
array yield measurements are somewhat variable, they appear to be consistent with the broader 
study group.  
 
Implant location may also affect decoding SNR if the hand area of motor cortex contains tuning 
“hot spots” for directional cursor movement. If so, more precise presurgical neuroimaging or 
broader coverage of relevant areas of motor cortex could improve decoding SNR. Additionally, 
variable foreign body response could be a factor, since silicon microelectrode arrays are known 
to cause tissue disruption in animal models (Nolta et al. 2015) and neural connectivity can 
decline even while neurons are spared (Gregory et al. 2023; Chen et al. 2024). Surgical technique 
may also affect array performance, potentially via minimization of  tissue disruption and foreign 
body response. 
 
Finally, it is important to note that arrays included in this study spanned 15 years of varying 
manufacturing processes, which would have contributed to some of the variability we observed. 
Also, arrays implanted in early trial participants used arrays with electrodes 1.0 mm in length 
(S1, S2, A1, T1, T3, T6) whereas later electrodes were 1.5 mm in length (S3, T2, T5, T7 through 
T11); combined with individual differences in cortical thickness, this would be expected to 
introduce variability regarding which cortical layers were recorded. 
 
Data collected over decades of human intracortical BCI research has demonstrated the growing 
potential of intracortical BCIs as a viable assistive technology, and many commercial efforts are 
currently underway to develop novel recording devices with improved durability and greater 
number of electrodes (Musk and Neuralink 2019; Sahasrabuddhe et al. 2021; Hettick et al. 
2022). As these new recording technologies become available, progress toward more performant 
BCI systems will require standardized benchmarks with which to compare devices. For cursor 
control applications, a variety of performance metrics have been applied, including Fitts bit rate, 
achieved bit rate, typing rate, target acquisition time and path length (Hochberg et al. 2006; 
Simeral et al. 2011; Gilja et al. 2015; Jarosiewicz et al. 2015; Nuyujukian et al. 2015; 
Pandarinath et al. 2017; Brandman et al. 2018). However, these metrics are sensitive to task 
parameters (e.g., target hold time or click decoding latency) and decoding algorithms, which vary 
widely across studies and have rarely been tuned for optimal comparative performance. Here, we 
used a decoding SNR metric that quantifies the amount of linear movement direction information 
present in a neural population, independent of decoding algorithm and task parameters, enabling 
a meaningful comparison across 10 years of ever-evolving research session designs. This metric 
could be used to compare devices aiming to enable BCI cursor control, and variants of this 
metric may enable comparison across other domains (e.g., speech), serving as an informative 
complement to clinical outcomes assessments that measure the combined efficacy of a particular 
device and neural decoding approach in restoring useful function. 
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Supplementary Figures 
 

 
Supplementary Fig. 1  | Median impedance. 
Median impedance measurements for 18 of 20 arrays. Points denoted with an X indicate the (manufacturer 
provided) pre-implant median impedance measurements. Impedance measurements were not recorded for 
Participant S1, and there were limited recordings for participant S2 so these arrays were excluded. 
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Supplementary Fig. 2  | Spike waveform signal and noise.  
(A) Waveform amplitudes over time for each array. Using a -4.5 times robust standard deviation threshold, spike 
waveforms were extracted and averaged for each electrode. The minimum (negative) voltage was then taken as the 
waveform amplitude for each channel. Each point represents the median waveform amplitude for electrodes 
detecting a threshold crossing rate greater than 2 Hz in an array. A single neural recording from each session was 
used. LOWESS curves are shown in black. Waveform amplitudes generally decreased over time. (B) Noise 
amplitude LOWESS curves for each array. Noise amplitude was estimated as -3.0 x RMS of the voltage signal. 
Noise amplitudes generally decreased over time. (C) Waveform amplitude is inversely correlated with impedance (r: 
-.53, p<.001), consistent with insulation degradation. Each point represents a single session’s median impedance and 
waveform amplitude values. (D) Waveform SNR. Waveform SNR was calculated as the ratio of waveform 
amplitude and noise amplitude. SNR remained relatively constant over time after an initial decline, indicating that 
waveform and noise amplitudes decreased at similar rates and did not appear to affect the ability to identify spikes 
up to 7+ years post implant.  
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Supplementary Fig. 3 |  Impedance heatmaps. 
Impedance measurements for four sessions included in the impedance dataset for each array (see Supplementary 
Methods 2.3). Each individual square within an array denotes the impedance measured on that electrode; the four 
corner electrodes were not wired for recording. On some arrays, impedance appears to decline more sharply along 
the edges of the array.  
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Supplementary Fig. 4  | Angular error.  
Angular error is calculated as the absolute angle difference between the vector from cursor position to target position 
and the decoded vector. A 300 ms window of activity per trial was used to evaluate angular error, as opposed to an 
instantaneous angular error metric.  Angular error ranges from 0 degrees (decoded vector is the same as inferred 
intended directional vector to 180 degrees (decoded vector is pointed directly opposite of the inferred intended 
directional vector.  (A) Angular error over time. Each point represents an angular error value for one session. 
LOWESS curves are shown in black for each array. (B) Overall deltas in angular error. Deltas were calculated by 
taking the mean angular error  in sessions recorded during the first 3 months post implant and subtracting the mean 
of angular error recorded during the last 3 months of recording. (C) Angular error distributions. Arrays are displayed 
in implant order. The dotted line indicates mean angular error across 9 able body participants performing the cursor 
task (D) Angular error and array yield are inversely correlated overall (r: -0.50, p < .001), although yield does not 
fully explain differences in decoding performance across arrays (same as in Figure 3f). 
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Supplementary Fig. 5  | Neural features.   
Distribution of normalized dSNR values. dSNR values for threshold crossings extracted with thresholds from a 
range of threshold multipliers are shown relative to dSNR values for spike band power features. As the threshold 
multiplier approached zero, decoding performance increased.  
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Supplementary Methods 
1​ Research procedures 

1.1​ BrainGate and BrainGate2 Clinical trials 
1.2​ Study participants 
1.3​ Electrode properties 
1.4​ Neural signal processing 
1.5 ​ Overview of data collection sessions 
​ 1.5.1​ Recording sessions used to estimate array yield 
​ 1.5.2​ Recording sessions used to estimate decoding SNR 
1.6      Able-body mouse movements 

2​ Longevity metrics  
2.1​ Spiking electrodes and array yield 
2.2​ Spike waveform signal and noise 
2.3​ Impedance 
2.4​ Decoding Signal-to-Noise Ratio (dSNR) 
​ 2.4.1 ​ iBCI dSNR 
​ 2.4.2​ Able-body mouse movements dSNR 
2.5​ Angular Error 
​ 2.5.1 ​ iBCI angular error  
​ 2.5.2​ Able-body mouse movements angular error 
2.6​ Tuning Stability Metric 
2.7​ Electrode Scaling 

 
1​ Experimental procedures 
 
1.1​ BrainGate and BrainGate2 Clinical Trials 
The BrainGate feasibility study (ClinicalTrials.gov Identifier: NCT00912041) is the largest and 
longest-running clinical trial of an implanted BCI. From June 2004 to May 2009, there were two 
IDEs: one enrolling individuals with spinal cord injury or brainstem stroke, and another that 
enrolled individuals with motor neuron disease. In 2009, clinical trial sponsorship transitioned 
from Cyberkinetics, Inc to Massachusetts General Hospital and a second generation trial 
“BrainGate2” was initiated, inclusive of people with diagnoses of cervical spinal cord injury, 
brainstem stroke, muscular dystrophy, or motor neuron disease. 
 
1.2​ Study participants 
This study includes data from the first 14 participants in the BrainGate and BrainGate2 pilot 
clinical trials (see Supplementary Table 1, modified from Rubin et al. 2023), who each gave 
informed consent prior to any research procedures. Participants were enrolled in the BrainGate 
feasibility studies (BrainGate2 ClincialTrials.gov Identifier: NCT00912041) which is performed 
under an Investigational Device Exemption (IDE)  from the US Food and Drug Administration 
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and approved by the  Mass General Brigham Institutional Review Board (Protocol #: 
2009P000505; CAUTION: Investigational Device. Limited by Federal Law to Investigational 
Use). Permission was also granted by the Stanford University Institutional Review Board (IRB; 
protocol #20804), the Mass General Brigham IRB (protocol #2009P000505), Case Western 
Reserve University IRB, and the Providence VA Healthcare IRB. All research was performed in  
accordance with relevant guidelines and regulations. 
 
 
Participant Gender Status Time 

from 
injury/ 
diagnosis 
to 
implant 
(y) 

Implant 
Date 

No. of 
arrays  

Electrode 
Length 
(mm) 

Total 
Implant 
Days 

Etiology 

S1 M Explanted 3 6/2004 1 1.0 484 C4 SCI, 
AIS-A 

S2 M Explanted 6 3/2005 1 1.0 790 C4 SCI, 
AIS-A 

S3 F Explanted 10 11/2005 1 1.5 1994 Pontine 
Stroke 

A1 M Deceased 7 2/2006 1 1.0 296 ALS 

T1 F Deceased 7 1/2010 1 1.0 307 ALS 

T2 M Explanted 5 6/2011 1 1.5 950 Pontine 
Stroke 

T3 M Deceased 2 6/2011 1 1.0 440 ALS 

T6 F Explanted 7 12/2012 1 1.0 1216 ALS, 
ALSFRS
-R 16 

T7 M Deceased 3 7/2013 2 1.5 552 ALS, 
ALSFRS
-R 17 

T8 M Deceased 8 12/2014 2 1.5 1104 C4 SCI, 
AIS-A 

T9 M Deceased 4 2/2015 2 1.5 759 ALS 
 

T10 M Explanted 9 6/2016 2* 1.5 518 C4 SCI, 
AIS-A 

T5 M Deceased 9 8/2016 2 1.5 2780 C4 SCI, 
AIS-C 

T11 M Enrolled 11 9/2019 2 1.5 ** C4 SCI, 
AIS-B 

 
Supplementary Table 1 | Arrays and sessions analyzed. 
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One or two 96 channel intracortical microelectrode arrays (Cyberkinetics Neurotechnology 
Systems (S1-S3, A1); Blackrock Neurotech (T1-T11)) were placed in the cortex of 14 
participants as part of the BrainGate and BrainGate2 clinical trials. *In T10, one array was 
placed in middle frontal gyrus. This array was included in yield analyses but not decoding 
analyses (since it was placed in a different brain area that is not comparable to hand knob). 
**Participant T11 is currently still enrolled and participating in research sessions. These analyses 
included T11 implant days 0-1710. 
 
1.3​ Electrode properties 
All arrays included in this study had platinum metallization of the electrode tip. BrainGate 
participants after those reported here have instead used iridium oxide arrays which have shown 
superior yield in non-human primates (Sponheim et al. 2021) .  
 
Electrode length was either 1.0 mm or 1.5 mm depending on the participant. At the beginning of 
the trial, participants with ALS were provided with 1.0 mm arrays even when the transition to 
1.5 mm arrays had been made for participants with SCI or brainstem stroke. This was informed 
by the concern that purposefully using 1.5 mm electrodes whose tips might rest in cortical layer 
V, where the Betz corticomotoneuronal cells are located, might be less informative (due to Betz 
cell loss in ALS) than aiming for more superficial layers. With experience, we recognized that 
variations in the thickness of the arachnoid and subarachnoid space, as well as imperfect ability 
to sit the array perfectly tangential to the (curved) cortical surface made it likely that array tips 
were often sitting in either superficial layer V or above even with 1.5mm electrodes.  
 
1.4​ Neural signal processing 
High-bandwidth neural signals were recorded from silicon microelectrode arrays using 
Blackrock Neurotech’s NeuroPort system. Signals were analog filtered (4th order Butterworth 
with corners at 0.3 Hz to 7.5 kHz) and digitized at 30 kHz. For this study, all additional signal 
processing was performed offline in order to standardize the signal processing pipeline across 
participants, sessions, and experimental designs.  
 
First, 30 kHz neural recordings (Blackrock Neurotech .ns5 files) were decimated to 15 kHz and 
bandpass filtered between 250 Hz to 5000 Hz using a 4th order Butterworth filter. Next, 
denoising was applied using LRR (Young et al. 2018; Musial et al. 2002)  LRR computes a 
unique reference signal for each channel. The LRR coefficients are calculated using linear 
regression to predict a channel’s activity based on the activity of all other channels in the array. 
These coefficients are then applied to the recording, generating an LRR signal which is then 
subtracted from the channel’s recorded voltage.  
 
Two classes of features were then computed: binned spike band power and binned threshold 
crossings. Unsorted threshold crossings and spike band power are commonly used measurements 
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of local spiking activity that enable comparable (or better) decoding performance as compared to 
sorted spikes (Chestek et al. 2011; Christie et al. 2015; Stark and Abeles 2007; Nason et al. 
2020). Binned spike band power was computed by taking the sum of squared voltages observed 
in 10 ms bins. Binned threshold counts were computed by counting the number of times the 
filtered voltage time series crossed the amplitude threshold in a 10 ms period. Electrode specific 
thresholds were calculated using a multiplier (-3.0, -3.5, -4.0, -4.5, -5.0, and -5.5) times the 
standard deviation of the voltage signal for each electrode. "Robust" thresholds were calculated 
using the same multipliers but applied to the scaled median absolute deviation (MAD × 1.4826) 
of the voltage signal for each electrode. The scale factor of 1.4826 was used to make the MAD 
equivalent to the standard deviation for normally distributed data. In addition to binned threshold 
counts, spike “snippets” were saved for all threshold crossing events. A snippet consisted of a 15 
kHz filtered voltage trace with 10 samples before the detected crossing, and 22 samples 
including and after the detected crossing. Snippet data captured ~2.1 ms waveforms of neural 
spikes. Electrode specific thresholds and LRR filter coefficients were computed from and applied 
to  each .ns5 recording independently.  
 
1.5​ Overview of data collection sessions 
Neural data were recorded from each participant in sessions lasting approximately 2-5 hours, 
typically occurring twice or more per week. Sessions could be cancelled or ended early at the 
participant's request. Participants were seated in a wheelchair or bed facing a computer monitor. 
Each session was divided into blocks of uninterrupted trials for a specific task. Participants were 
encouraged to rest between blocks, with block durations typically ranging from 1 to 20 minutes 
based on their preference. The goal of developing and testing new neural decoding architectures 
resulted in a wide variety of tasks and daily research block designs across sessions and 
participants. 
 
1.5.1​ Recording sessions used to estimate array yield 
Neural data from 2,319 sessions across 14 participants were evaluated in Figure 2, 
Supplementary Figure 1, and Supplementary Figure 2 to estimate array yield (“yield dataset”). 
The yield dataset consists of a single high-bandwidth recording from each session (.ns5 file), 
used to derive threshold crossing rates and spike waveform snippets. A single recording from 
each session was programmatically selected based on its duration (the shortest recording greater 
than 5 minutes was chosen; if no recordings were longer than 5 minutes, the longest recording 
was chosen). Research task or device settings (e.g., headstage used, reference wire used) were 
not considered. Raster plots and spike panels were generated for all candidate sessions using a 
robust threshold with a -4.5 multiplier (see Supplementary Methods 1.3) and manually inspected. 
Sessions with evident electrical artifacts were discarded. A total of 2,486 candidate sessions were 
evaluated and 2,319 were included in the study (see Supplementary Methods Figure 1 below). 
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Supplementary Methods Figure 1  | Analysis pipeline for the yield dataset. 
 
1.5.2​ Recording sessions used to estimate decoding SNR 
Neural and BCI cursor control task data from 634 sessions across 14 arrays and 9 participants 
were evaluated in Figure 3 to estimate decoding SNR (“decoding dataset”). Relative to the “yield 
dataset” above the decoding dataset contains a more limited number of sessions and participants, 
as not all sessions included closed-loop BCI cursor control, and for the first 5 participants 
high-bandwidth neural data (.ns5 files) were either not recorded during cursor control (S1, S2, 
A1), not recorded for the first year post-implant (S3), or could not be consistently aligned to 
cursor task data (T1). For each session, binned threshold crossings, binned spike band power, 
target positions, and cursor positions were extracted from all candidate closed-loop cursor 
control blocks collected within that session. Candidate closed-loop cursor control blocks were 
identified as blocks involving goal-directed movement towards explicit targets (eg. tasks such as 
radial-8, fitts, grid task) based on task metadata and documented session notes. Cursor 
trajectories were plotted and non-target directed blocks were excluded, as well as idiosyncratic 
tasks, and blocks where poor closed-loop decoder performance was likely to prevent consistent 
movement intention behavior from participants (e.g., cursor stuck in a corner of the screen for 
long durations due to noise or errors in novel/experimental decoding pipelines).  
 
Binned threshold crossings and spike band power were calculated using 10, 20, 50 or 100  ms 
bins from high bandwidth recordings (see Supplementary methods 1.4) and aligned to target 
positions and cursor positions measured at the same resolution (bin width varied depending on 
the participant and session, and were the same bin widths used at the time of data collection). Bin 
widths greater than 20 were only used for T2 and T3. Raster plots were generated from ns5 
derived features and blocks with excessive electrical noise were discarded. Data from individual 
blocks within a session were then concatenated into a single dataset for each research session. A 
total of 712 candidate cursor control sessions were evaluated, and 634 were included in this 
study (see Supplementary Methods Figure 2). 
 

 
Supplementary Methods Figure 2  | Analysis pipeline for the decoding dataset. 
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1.5​ Able-bodied mouse movements 
Able-bodied mouse movements were recorded from 9 volunteers who engaged in a task designed 
to assess their cursor control accuracy when using an optical computer mouse (Dell MS111) and 
linux computer (Ubuntu 22.04) . This study was reviewed and approved by Stanford University 
Institutional Review Board under protocol number 68028. Each participant was seated in an 
office chair facing a computer monitor that displayed a ring of targets surrounding a central 
target. Data collection occurred during a single session, which comprised three blocks of 100 
trials each. Participants were instructed to move the cursor from the center of the ring to a 
designated target as quickly, accurately, and consistently as possible. During each trial, a single 
target in the ring would illuminate in green, prompting participants to initiate their movement. 
This typically resulted in an initial "push" towards the target, followed by smaller corrective 
movements towards the target. After hovering the cursor above the target for 500 ms, the central 
target would turn green, signaling participants to return the cursor to the center in preparation for 
the subsequent trial. 
 
2​ Longevity metrics 
 
2.1​ Spiking electrodes and array yield 
The number of spiking electrodes was calculated for each session included in the yield dataset 
(defined in 1.5.1). Linear regression referencing and a robust -4.5 threshold was used to extract 
threshold crossings (see 1.4). To obtain a robust measure of threshold crossing rates, we 
segmented the data into 10 second intervals and computed the threshold crossing rate for each 
segment. The median threshold crossing rate was then determined to mitigate the influence of 
outliers. Electrodes that detected a median threshold crossing rate greater than 2 Hz were 
considered to be “spiking” and contributed to the overall spiking electrode count of the array. A 
2 Hz threshold was based on manual inspection of spike waveforms and is a conservative 
measure that aligned with our perception of which electrodes were active on a spike panel 
visualization. Array yield was then calculated as the percentage of spiking electrodes in the array. 
 
2.2​ Spike waveform signal and noise 
Neural spike waveform amplitude and noise amplitude were calculated for each session included 
in the yield dataset (defined in 1.5.1). Spike waveform snippets were extracted (as described in 
1.3, with linear regression referencing and a -4.5 robust threshold) and for each spiking 
electrode, a mean spike waveform snippet was calculated by averaging all waveform snippets 
over time. The minimum voltage value for the mean snippet was then denoted as the spike 
waveform amplitude for that electrode. The median spike waveform amplitude was then used to 
compare waveform amplitudes over the recording duration of the array (Supplementary Figure 
2). To identify noise amplitudes over time, we took the mean robust threshold value across 
spiking electrodes when using a -3.0 multiplier (see 1.3 for thresholding details). 
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2.3​ Impedance 
Array impedance values were calculated for all sessions in the yield dataset (defined in 1.5.1) 
that had acompanying recorded impedance values. As not all sessions included impedance data 
collection, this dataset consisted of a more limited number of sessions and participants (1,646 of 
2,319 total sessions). Impedance measurements were not recorded for participant S1, and a 
limited number of sessions had impedance measurements for participant S2 (not allowing for a 
meaningful trend to be derived), so these arrays were excluded. Automated impedance 
measurements became available on implant day 125 for participant A1. For sessions with 
multiple impedance recordings, a single instance was used. Electrode impedance measurements 
were taken through the percutaneous pedestals using Blackrock pogo pin or thin film patient 
cables and Blackrock Neurotech’s Central software and hardware (1 kHz test frequency). The 
median impedance value across channels was taken for comparing impedance values over 
recording duration (Supplementary Figure 1). Electrode impedance measurements over 4000 
kOhms were outliers indicating non-functioning electrode connections and were discarded in 
Supplementary Figure 1. To visualize impedance measurements relative to the array geometry in 
Supplementary Figure 3, impedances are shown for four days spanning the implant period: the 
first post-implant measurement, the last available impedance measurement (which was prior to 
the last trial day for some participants), and 2 measurements in between. 
 
2.4​ Decoding Signal-to-Noise Ratio (dSNR) 
The decoding signal-to-noise ratio (dSNR) is a vector-based movement intention decoding 
metric decomposing offline linear decoder output into a signal component (pointing toward the 
target) and a noise component to calculate a decoding SNR. Variations of this metric have been 
applied to iBCI data for cursor control and finger movement decoding (Shah et al. 2024; Willett, 
Murphy, et al. 2017; Willsey et al. 2025) 
 
2.4.1 ​ BCI dSNR 
Decoding signal-to-noise ratio was evaluated for all closed loop cursor sessions included in the 
decoding dataset (defined in 1.5.2; this dataset includes all target-directed cursor control tasks 
such as radial 8, grid, Fitts, etc.). For each session, neural activity, cursor positions, and target 
positions were concatenated across multiple experimental blocks. Neural features were 
block-wise normalized by subtracting the median (for spike band power) or mean (for threshold 
crossing rates) to account for nonstationarities in neural activity. Additional normalization was 
performed on spike band power features by dividing by the robust standard deviation (1.4826 
times the median absolute deviation) and capping values at 100.  
 
To calculate a dSNR value for each session, we first calculated a 2 x 1 position error unit vector, 

, for each time bin , where  is the target position and  is the cursor position. 𝑢
𝑡

=
𝑔

𝑡
−𝑝

𝑡
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threshold were excluded, as movement intention becomes ambiguous when the cursor is already 
close to the target. The remaining bins were divided into 5 cross-validation folds. For each fold, 
we trained a linear decoder to predict  as a linear function of the corresponding neural feature 𝑢

𝑡

vector  : 𝑓
𝑡

 . 𝑢
𝑡

= 𝐷𝑓
𝑡

+ 𝑏 

Here,   is an 2 x N decoder matrix,  is an N x 1 feature vector, and  is a 2 x 1 bias term. We 𝐷 𝑓
𝑡

𝑏

estimated  and  using ordinary least squares.  𝐷 𝑏
 
Because of regression dilution, noise in   causes  to shrink, and the linear decoder outputs are 𝑓

𝑡
𝐷

biased to be smaller than the unit vector targets . To correct for this effect and force the 𝑢
𝑡

decoder’s output to lie around the unit circle (which is helpful for visualization and estimation of 
SNR), we re-normalized  and b after training: 𝐷

 𝐷
 𝑛𝑜𝑟𝑚

= 𝐴 −1𝐷

 𝑏
 𝑛𝑜𝑟𝑚

= 𝐴 −1(𝑏 − 𝑐)

We estimated the 2 x 2 matrix A and the 2 x 1 column vector c by modeling how 
window-averaged decoder outputs from the training set related to the ground truth. Let  be the 𝑦

𝑖

2 x 1 average decoder output from a 300 ms window at the beginning of a trial i (beginning after 
a participant-specific reaction time). We then estimated A and c using ordinary least squares 
applied to the model: 

 . 𝑦
𝑖 
 = 𝐴𝑢

𝑖
+ 𝑐 + ε

 𝑖
 

It then follows that if we would like  to match the scale of the ground truth vectors , we can 𝑦
𝑖

𝑢
𝑖

subtract c and multiply by , which results in outputs that match  on average: 𝐴 −1 𝑢
𝑖

. 𝐴 −1(𝑦
𝑖

− 𝑐) = 𝑢
𝑖

+ 𝐴 −1ε
 𝑖
 

 
Finally, we evaluated the SNR of the held-out decoder predictions across all folds. Let  be 𝑦

𝑛𝑜𝑟𝑚,𝑖

the output of the normalized decoder for trial i, averaged across a 300 ms window at the 
beginning of the trial. We fit the following linear model to :  𝑦

𝑛𝑜𝑟𝑚,𝑖

 𝑦
𝑛𝑜𝑟𝑚,𝑖 

 = 𝑎𝑢
𝑖

+ ε
 𝑖
 

Here, a is a scalar parameter that captures the scale of the decoder outputs (if normalization was 
successful, a will be near 1) and  is a 2 x 1 gaussian noise vector. The a parameter was fit using ε

 𝑖

ordinary least squares. To estimate the magnitude of decoding error, observed model errors 
 were computed and combined over the X and Y dimensions into a single ϵ

𝑖
= 𝑎𝑦

𝑛𝑜𝑟𝑚,𝑖 
− 𝑢

𝑖
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vector. Finally, the standard deviation of  was estimated in a robust way by multiplying the ϵ
𝑖

median absolute deviation by  ( median(| |)). dSNR was then calculated 1. 4826 σ = 1. 4826 ×  ϵ
as .  𝑑𝑆𝑁𝑅 =  𝑎

σ

To estimate session-specific reaction times without overfitting the reaction time, we employed an 
outer 10-fold cross-validation procedure. For each outer fold, reaction time was swept in 100 ms 
increments from 0 to 1000 and dSNR was estimated. The reaction time yielding the highest 
dSNR was then chosen and applied to generate window-averaged decoder outputs for all trials in 
the held-out test set. The window-averaged outputs across all test sets were then combined to 
estimate a final dSNR value per session (note that reaction times may have varied across folds 
and across sessions).   
 
2.4.2​ Able-bodied mouse movements dSNR 
To assess the decoding signal-to-noise ratio in able-bodied participants performing cursor 
movements (see 1.6) we used a modified dSNR metric. Cursor trajectories were binned by taking 
the median cursor position in 10 ms windows. Movement onset was defined as 30 ms prior to the 
cursor speed exceeding a threshold of 1 (arbitrary units). Evaluation windows captured the initial 
movement while excluding corrective movements after the initial “push” (see Supplementary 
Methods Figure 3). As speeds differed between participants, the evaluation window length used 
for the analysis period was participant specific and determined by sweeping window lengths 
from 160 ms to 260 ms to maximize dSNR. A movement vector was calculated between cursor 
positions at the end of the evaluation window and the start of the evaluation window. This vector 
was used in place of the decoder predicted point at target used for iBCI dSNR. 
 

 
Supplementary Methods Figure 3  | Mouse movement evaluation window 
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2.5​ Angular Error 
Angular error is defined as the absolute angle difference between the inferred intended 
movement vector from cursor position to target position and the decoded vector. An angular error 
of 0° indicates perfect alignment between the intended and decoded movement directions, while 
an error of 180° indicates the decoded direction is opposite to the intended direction. Angular 
error complements dSNR by providing a more intuitive measure of directional accuracy that is 
directly interpretable in the context of cursor control tasks. While SNR captures both magnitude 
and direction, angular error specifically quantifies directional accuracy. 
 
2.5.1 ​ iBCI angular error  
Angular error was evaluated for all closed loop cursor sessions described in 1.5.2 using the same 
cross-validated decoding framework used for dSNR calculations. For each trial, the intended 
movement direction was defined as the unit vector from cursor position to target position during 
the 300ms evaluation window. The decoded direction was obtained from the linear decoder's 
output on held-out test data. The mean angular error across trials was taken to be the angular 
error for that session.  
 
2.5.2​ Able-bodied mouse movements angular error 
For able-bodied mouse movement data, angular error was computed between the actual 
movement vector and the intended target direction for each trial. Using the same movement 
epochs identified for dSNR analysis (see 2.4.2), the angular error was calculated as the absolute 
angle between the movement vector and the unit vector pointing from initial cursor position to 
target.  
 
2.6​ Tuning Stability Metric 
Neural tuning stability was evaluated for 11 of 14 arrays included in the decoding dataset 
(defined in 1.5.2). Three arrays (T2, T3, T11 Lateral) were discarded from this analysis, as they 
did not consistently provide meaningful movement intention decoding (dSNR <1) for the cursor 
tasks evaluated. Spike band power features were block-wise normalized by subtracting the 
median. Additional normalization was performed by dividing by the robust standard deviation 
(1.4826 times the median absolute deviation) and capping spike band power values at 100. 
 
For each session, we estimated a linear model of neural tuning to intended movement direction: 

, 𝑓
𝑡 

= 𝐸(𝑔
𝑡 

− 𝑝
𝑡
) + 𝑏 + ε

𝑡

where  is an N x 1 neural feature vector at time step t, E is an N x 2 matrix of neural tuning 𝑓
𝑡 

coefficients,  is a 2 x 1 target position vector,  is a 2 x 1 cursor position vector, b is an N x 1 𝑔
𝑡 

𝑝
𝑡

bias term, and  is an N x 1 vector of Gaussian noise. E and b were estimated using robust ε
𝑡

regression to minimize the effects of any time steps containing electrical artifacts. We used the 
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“robustfit” function in MATLAB (MATLAB R2024b, The MathWorks Inc) with bisquare 
weighting and a 4.685 tuning coefficient (Holland and Welsch 1977). 
 
To obtain estimates of  and  (the columns of E corresponding to the x and y 𝐸

𝑥| || | 𝐸
𝑦| || |

directions), which are used to compute across-day correlations, we used two-fold 
cross-validation to reduce bias. Otherwise, simply computing  and  from a linear 𝐸

𝑥| || | 𝐸
𝑦| || |

model estimate of E results in estimates that are biased upwards (noise in the estimates inflates 
the magnitude). We fit separate linear encoding models  and  on two independent folds 𝐸

1
𝐸

2

following the methods above, centered the columns of  and  by mean-subtracting each 𝐸
1

𝐸
2

column, and then estimated  as follows (and proceeding similarly for ): 𝐸
𝑥| || | 𝐸

𝑦| || |
= . 𝐸

𝑥| || | 𝑠𝑖𝑔𝑛(𝐸
1,𝑥
𝑇 𝐸

2,𝑥
) 𝐸

1,𝑥
𝑇 𝐸

2,𝑥
|||

|||
 
This estimate is implemented as cvOLS in the cvVectorStats library 
(https://github.com/fwillett/cvVectorStats), along with a demonstration of efficacy (testOLS).   
 
The correlation across days in the x-direction (and identically for y) can then be computed as: 

, 
𝐸

𝑠1,𝑥
𝑇 𝐸

𝑠2,𝑥

𝐸
𝑠1,𝑥| || | 𝐸

𝑠2,𝑥| || |
where  is the column of x-direction coefficients for session 1, and    is the column of 𝐸

𝑠1,𝑥
𝐸

𝑠2,𝑥

x-direction coefficients for session 2. We averaged the x and y correlations to yield a single 
correlation value for each pair of sessions.  
 
2.7​ Electrode Scaling 
Electrode scaling properties were assessed for 11 arrays providing meaningful movement 
intention decoding (dSNR > 1). To evaluate how decoding performance scales with electrode 
count, we randomly subsampled electrodes from 6 up to 96 and for each electrode count 500 
random permutations were generated and 5 fold cross-validated dSNR was calculated using 
spike band power neural features (as described in 2.4.1). The mean dSNR across permutations 
was calculated for each electrode count, providing a scaling curve for each array. For participants 
with dual arrays, electrodes were pooled across both arrays and sample counts were extended to 
a combined 192 electrodes. dSNR scaled as an approximate logarithmic function of the number 
of electrodes included for decoding and linear extrapolation was used to estimate yields for 
electrode counts up to 1024.  
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