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We present a foundation model-derived method to identify highly informative tokens and
events in electronic health records. Our approach considers incoming data in the entire
context of a patient’s hospitalization and so can flag anomalous events that rule-based
approaches would consider within a normal range. We demonstrate that the events our
model flags are significant for predicting downstream patient outcomes and that a fraction
of events identified as carrying little information can safely be dropped. Additionally, we
show how informativeness can help interpret the predictions of prognostic models trained on
foundation model-derived representations.
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1. Introduction

Healthcare generates a stream of data, including vitals, labs, medications, and respiratory
support. Clinical decision making requires parsing and understanding this information and its
importance in the context of each patient’s medical history. Oftentimes, event summaries like
automatically-collected vitals provide little additional knowledge about a patient.5® Clinicians
are commonly notified regardless, resulting in increased cognitive burden and alarm fatigue.*®
For over a decade now, the Joint Commission has included “reduc|ing] patient harm associated
with clinical alarm systems” as a National Patient Safety Goal [49, NPSG.06.01.01, since 2014].
In this paper, we investigate the extent to which foundation model (FM)-derived estimates of
event information can be used to highlight the most important events in a patient’s record. In
essence, we explore which events are surprising to the FM based on a comparison between what
the model expects to happen next and what is observed. Identifying important or surprising
events has the potential to substantially improve our understanding of healthcare delivery and
better inform clinicians about the status of their patients.

Divergence between the model’s expectation and the actual observation or informativeness
broadly indicates one of three things: (1) practice variation, when a clinician makes a decision
which deviates from what is typically done in similar contexts in the training data (e.g.,
prescribing a medication off-label); (2) an unexpected change in patient condition that would
generally be observed in clinical measurements (e.g., a lab result which indicates a change
in patient state that could not be predicted using observed covariates); or (3) issues of data
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quality which could be present in either orders or patient measurements (e.g., a typo when
entering a value). In all three cases, there is the potential to learn substantially from the
model’s “surprise,” to potentially reduce clinical errors, and to rapidly and succinctly surface
the most important information for a clinician. This could be used to both better inform the
time-sensitive decision-making that often occurs in the hospital setting as well as to provide
a summary of the most important information about a patient for downstream analyses like
phenotyping or sub-population identification.

While this work focuses on patients receiving critical care in the inpatient setting, the
approach aims to be one which can be generalized to many healthcare settings with longitudinal
data and outcomes. This work operates at the level of Electronic Health Records (EHRs)
corresponding to individual hospitalization stays. For each hospitalization, we form a sequence
of tokens that describe the admitted patient, along with their admission type, and then chronicle
vitals, administered medications, lab results, assessments, and a few other categories of data
as they become available, ending with a token for discharge.?3%46 We perform self-supervised
training of a foundation model (FM) to predict the next token in one of these sequences
given all previous tokens. Such models have proven remarkably effective across a number of
fields®3847 but most importantly in our case for predicting a variety of downstream clinical
outcomes.?*%* Furthermore, these models are generative®! in the sense that they estimate the
joint probability distribution on these sequences. Given a trained model and a novel sequence,
we can estimate the context-aware (conditional) information of each token. We call a series
of tokens that become available at the same time “an event” and calculate context-aware
information for each event. We show that highly informative tokens and events are more
predictive of downstream outcomes and tend to result in greater changes to the model-derived
understanding of a patient’s current condition.

In this paper, we present the first comprehensive study of FM-derived information quantifi-
cation for tokens and events in EHRs. Our main contributions are as follows:

(1) We propose a principled FM-derived method to identify highly informative tokens and
events in a patient’s EHR. As opposed to classical rules-based methods, our context-
informed approach identifies anomalous labs and assessments even when a patient has
values within what would be considered a normal range. As opposed to the variable
importance methods applied to classifiers trained for specific outcomes, our method defines
informativeness in terms of the sequences themselves.

(2) We illustrate how the occurrence of highly informative events impacts a patient’s prognosis
and alters the FM-derived representation that is commonly used for making downstream
predictions. In terms of interpretability, this allows us to provide a list of events deemed
most informative to the FM. We show that dropping these events from a patient’s timeline
impacts the performance of downstream prognostic models. Conversely, we show that events
carrying the least information can be dropped without sacrificing predictive performance.

2. Related work

Early approaches to modeling sequential data derived from EHRs focused on recurrent neural
networks (RNNs) including Long Short-Term Memory [20, LSTM] networks.?19:28:36 Approaches



shifted from RNNs to transformers®® beginning with variations on BERT,!! including BEHRT?"
and Med-BERT .37 Subsequently, Foresight?> and ETHOS?%%° both used generative pretrained
transformer [35, GPT] architectures. Wornow, et al. provided a detailed review of FMs for EHRs
up to 2023.>* More recently, Mamba,!® a selective state-space model, has found applications in
ClinicalMamba® and EHRMamba.'3

Some efforts have been made to better understand these types of models. Beaulieu-Jones, et
al.% noted that sequential EHR models can learn both from the patient’s actual state (e.g. the
result of a particular lab) and from clinicians’ actions (e.g. the fact that a particular lab was
ordered). They found that models trained on demographics, admissions data, and charges from
the first day of admission (clinician-initiated actions) performed competitively against models
trained on full sequences of EHR data. In doing so, they raised an important point about
understanding which tokens and events in a patient’s sequence drive a model’s understanding
of that sequence.

Wornow et. al’? studied, among other things, how sequences derived from EHRs differ
from natural language (written English). They showed how EHRs exhibit copy-forwarding of
chronic diagnoses, irregular spacing between tokens, and increased perplexity of tokens over
time due to disease progression. Their definition of perplexity relates closely to our definition
of informativeness, but they did not investigate which types of tokens tend to carry more
information, nor did they consider subsequences. In contrast to this work, they focused on
much longer-term time horizons consisting of multiple clinical encounters, whereas we focus on
single hospitalization events.

3. Methods
3.1. Data

We considered 422,765 hospitalization events for adults (age 18 or older) from the Beth Israel
Deaconess Medical Center between 2008-2019 (MIMIC-1V-3.12%) and 50,440 hospitalization
events from the UCMC health system between March 2020 and March 2022. We restricted
our analysis to patients with stays of at least 24 hours. We formatted EHR data from each
health system into the CLIF standard.*! The MIMIC patients were partitioned into training,
validation, and test sets at a 70%-10%-20% rate. We then collected each hospitalization event
for patients in a given set. In this way, hospitalization records in the test set corresponded to
patients with no hospitalization events in the training or validation sets to avoid any potential
information leakage. The UCMC data was primarily used as a held-out test set. For this reason,
we partitioned the internal patients into training, validation, and test sets at a 5%-5%-90%
rate according to the time of their first hospitalization event, with training patients coming
first, followed by validation, and then test.

3.2. Tokenization

We converted each hospitalization event from the CLIF standard into a sequence of tokens
(represented computationally as non-negative integers) as follows. For a given sequence, the first
token always corresponds to a timeline start token. The next three tokens contain patient-level
demographic information on race, ethnicity, and sex. The following two tokens correspond
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Figure 1. Clategory-value tokenization. We convert lab results into tokens as follows. For each lab
category, we determine decile cutoffs (center) using all results corresponding to that lab category
available in the training dataset. Each lab value is then encoded as a decile (with QO corresponding to
the lowest decile, Q1 to the next, and so on up to Q9) and inserted into the corresponding hospitalization
in temporal order.

to admission-specific information, namely patient age converted to a decile and admission
type. Taken together, we refer to the 5 tokens occurring immediately after the timelines start
token as the admission prefix. Tokens corresponding to a variety of events for a hospitalization
are then inserted in the same order in which these events occurred. Transfers are encoded
with their standardized location category. Labs are encoded with two tokens and inserted
at the time results become available: one for the lab category, and a second corresponding
to the deciled lab value in the training data within that category. We call this strategy, of
tokenizing categories and binning their corresponding values according to the training value
of the deciles, category-value tokenization. See Figure 1 for an illustration. A handful of
other tables receive this type of tokenization: vitals and results according to vital category,
medication and dosage by medication category, assessment and results by assessment category.
Respiratory information is recorded at the beginning of respiratory support; the encoded
information is mode category and device category. We include a token indicating if a patient is
placed into a prone position. All hospitalization-related data is encoded this way and inserted
in chronological order. Tokens that arrive synchronously correspond to an event and always
appear coterminously in a sequence. Timelines then end with a token for discharge category
and a dedicated timeline end token. We did not use time-spacing or artificial time tokens? as
recent studies suggest they do not improve performance.??

3.3. Context-aware information

Consider the set V7T of length-T sequences of tokens drawn from some vocabulary V. Such
sequences correspond directly to tokenized EHR data as described in the previous subsection.
For a given sequence x = (z1,...,z7) and indices 1 <u < v < T, we let zy.p = (Tu, Tut1, -5 o)
correspond to the subsequence and ., = x1.,_1 to the context at u for u > 1. If p is a probability
distribution on VT we let p(z4.4) = Px~p(Xuw = Tu:y) denote the marginal distribution and



P(Tyw|Ty2) = Pxp(Xuiw = Tyw|Xy:2 = 24.2) denote the conditional for indices u, v, y, z. We adopt
the convention that p(zy.p|2<1) = p(Tu.y). With these definitions, the Shannon self-information*?
of a certain realized subsequence ., under p is given by I,(zy.,) = —logy p(xy:,). The context-
aware information associated to a realized subsequence z,., € V and context ., € V¥~ ! is
defined analogously, by

Ip(xu:v‘x<u) = —logy p(Tuw|T<u)- (1>

In the case of a single token z;, we have t = v = v and refer to

Ip($t|$<t) = —logy p(z¢|T<t) (2>

as tokenwise context-aware information. As p(@y.|z<t) = [1}_, P(zt|z<t), it follows that

Ly(zywlzaw) = D p_y, Ip(ze|z<t). (3)

Thus, context-aware information is additive.

This quantity plays a pivotal role in the training of standard models. A model is a
parameterized distribution pg on V7. Training attempts to find parameters 6 that minimize
the relative entropy (or Kullback—Leibler divergence?®) between the empirical distribution p
given by the training set and py,

D(pllpo) = Ex, rnpllp, (X1.7)] = Exp ol Ip(X17)] - (4)
H(p,po) H(p)

Here, H(p, pg) is the cross-entropy between p and py and H(p) is the entropy of p. As this latter
term is independent of 0, it may be disregarded during training / optimization. By (3), we
have the simplification H(p,py) = Zthl Ex,.p~pllp, (Xt|X<¢)]. We see that the training process
optimizes 6 to minimize the expected tokenwise context-aware information over the training set.
In more general terms, training finds the model py that makes the training set least surprising.
This is equivalent to maximum likelihood estimation [16, §5.5]. Upon completion of training,
py. with optimized parameters 6, serves as our best approximation to p and can be used to
calculate the context-aware information (1) in new timelines for tokens and subsequences.

3.4. Model

For our parameterized distribution pg on sequences of tokens/integers, we train a model from
scratch based on the Llama-3.2 model architecture!” with a hidden size of 1024, intermediate
size of 2048, 8 hidden layers, and 8 attention heads, for a total of 67.3 million parameters.
Wornow, et al.’s [52, Fig. 1B] architecture comparison indicates that the Llama architecture
performs favorably to GPT,? Hyena,** and Mamba'® architectures for context lengths of
1000-2000 tokens, such as we use here.

3.5. Training

As our vocabulary is created during the tokenization process, we train models from scratch,
as opposed to fine-tuning models that have been pre-trained on a tokenized natural language
vocabulary. We train weights to minimize (4) with AdamW,?* a variant of Adam?* with



decoupled weight decay.'® Training batches were formed by packing tokenized sequences into a
bx 1024-dimensional array in row-major order where b is the batch size.* We used tree-structured
Parzen estimators! to tune the learning rate (between 5-107% and 5- 1074, inclusive) and
effective batch size (between 32 and 96, inclusive). Models were trained on a single compute
node with 8xA100 (40GB PCle) GPUs, connected with 2x16-core 3.0-GHz AMD Milan
processors. The model having best-performing loss on the MIMIC evaluation set was selected
and provides the p used to calculate context-aware information for the remainder of the paper.

3.6. Representation-based prognostic models

As a causal language model or state space-based model processes a sequence z1.7 of tokens, it
forms a representation R(z1.) € R? of the subsequence encountered up to the tth token for each
1 <t < T, where d tends to be at least a few hundred dimensions. In Llama models, we take the
last hidden state to be our representation, with d equal to the “hidden size” parameter, in our
case set to 1024. In many FM-based works,3452 these representations or a function of them
provide the basis for all subsequent prognostic predictions. For example, the representation
R(x14,) of a patient’s timeline that contains all tokens occurring prior to some cutoff time will
then be used as features in a logistic regression model to predict outcomes for that patient
occurring after the cutoff time. All patients start with the same representation, i.e. R(z1)
corresponds to the representation associated to the “timeline start” token. As tokens are added
to each timeline, these representations diverge. We are generally interested in the relationship
between informativeness and corresponding changes in representation space at both the token
and event levels of granularity. Establishing a strong relationship between information content
and changes in representation could help to explain the predictions of representation-based
prognostic models. To this end, we define the magnitude of the change in representation space
when token z; is added as

Ay = [|R(21:¢) — R(w1:6-1) | ()

where the norm is taken to be the standard Euclidean norm and define the path length in
representation space corresponding to a subsequence z,., as

Ayy = Z;):u Ay (6)

3.7. Highlighting examples

We denote the ith timeline in the test set by z() = xgl)T For each 1 <t < T, we use the model
to calculate the associated tokenwise context aware information, Ip(xf)mg). For events, i.e.
maximal contemporaneous subsequences .., occurring between the prefix and suffix tokens,
we calculate eventwise context-aware information I, (x'|z%),) as in (1).

2Note, because of this packing strategy, the model does not learn that our sequences always start
with the timeline start token. By convention, the true p(x;) is an indicator function on the timeline
start token, so that I)(z1) should be —log, 1 = 0. (Deterministic tokens do not carry information.)
The model should learn that the first token after the start token should be a race token, and then an
ethnicity token, and so on, because for these predictions, context is supplied.



3.8. Redaction experiment

We restrict our cohort to patients who are admitted to the ICU within the first 24 hours of
their admission. We consider two outcomes: inpatient mortality, defined as patient death prior
to discharge from the hospital, and long length-of-stay, defined as discharge occurring > 7 days
after admission.

For each timeline truncated at the 24 hour mark, we calculate context-aware information
for each event. For each of 10%, 20%, 30%, & 40%, we drop that percentage of either the most
or the least informative events, or that percentage of events chosen at random. We do this
for each combination of percentage and method (most, least, random), creating 12 partially
redacted versions of the original 24-hour timelines.

For each data version, we extract 24-hour representations R(z1.,) using our model, where
to < 1024 corresponds to the last token to arrive within 24 hours of admission. Note that, in
an abuse of notation, tg depends on the hospitalization sequence z. Much more information
is collected for some patients in the first 24 hours than for others. We then train a logistic
regression classifier to predict each outcome (inpatient mortality and long length-of-stay) given
the 24-hour representations on the training portion of the MIMIC dataset. We apply each
model to the respective versions of both the MIMIC and UCMC test sets.

We perform bootstrap resampling to estimate 95% confidence intervals for test set-based
variability in the ROC-AUC [12, ¢f. §13.3]. This method takes a fixed classification model and
forms an empirical distribution of performance metrics by resampling test data 10,000 times.

We also use bootstrap sampling to estimate p-values for the hypothesis test of Hy :
AUC, = AUC; against the one-sided alternative H, : AUCy > AUC;, where AUC corresponds
to the original AUC and AUC; to the AUC from a fixed classifier built and tested on
redacted timelines [12, Algorithm 16.1]. This method compares the observed difference in AUC
performance against differences obtained from 10,000 resamplings under the hypothesis that
predictions from the two classifiers are exchangeable. This bootstrapping approach also only
simulates variability in the test set given fixed classifiers.

4. Results
4.1. Highlighted timelines

We present the first 210 tokens from three timelines along with comments as Figures 2-4. We
see that informative tokens sometimes correspond to lab events or vitals readings that have a
direct bearing on the patient’s current state. Examples include the lymphocytes percentage lab
in Figure 2, arterial PCOs in Figure 3, and blood pressure readings in Figure 4. Informative
tokens can also correspond to clinician-initiated events, such as the CAM assessment?? in
Figure 3 following a low RASS*? score. (If the RASS score were -4 as opposed to -3, typically
the CAM assessment would not be made until later.) Finally, informative tokens can correspond
to measurements that seem implausible and may be worth further investigation, such as the
Braden scores” in Figure 4.



30

N
(=]

| i
| |
(=
N
o

|
|
\4

I||HIIIIIIIIIIIII
|
|
|
|

| LlABchloride Q8 LABoreatmine Q5 LABglucoseserum Q3 15
[ LAB magnesum Q7  LABpotassiim Q2  ILABsodum Q7

|
|

[
o

|
i
i

i
|

II
o
o|
=

i
I
i
1

0o  LABpt 0  LABp® Q5
_____— 0

Figure 2. Timeline highlighted by tokenwise context-aware information for MIMIC hospitalization
24640534 (first 210 tokens). This white, non-Hispanic male of age ~ 60 was admitted to the ED for
observation. He had no previous admission history within MIMIC. His stay was 37 days 22 hours in
duration. After the stay, he subsequently received ICD-10 diagnoses C9200 for ‘Acute myeloblastic
leukemia, not having achieved remission’” and 1214 for ‘Non-ST elevation (NSTEMI) myocardial
infarction’, among others. (Full diagnostic list in appendix.) The model successfully identified low
lymphocytes as being potentially clinically relevant (Lab_lymphocytes_percent, Q1), but overlooked
the low neutrophils (Lab_neutrophils_percent, Q0) and high troponin T (Lab_troponin_t, Q9).

4.2. Counts of highly informative tokens and events anticipate negative
outcomes

We consider T>g5, the number of tokens exceeding the 95th percentile for informativeness,
E>95,.<99, the number of events in the 95th to the 99th percentile, and E>g9, the number of
events exceeding the 99th percentile for informativeness. For these definitions, we restrict to
tokens and events that occur within the first 24 hours of admission.

In a logistic regression model for inpatient mortality in the MIMIC test set, we find that
Tso5 (B = 0.0269,p < 0.001), Esgs,<99 (8 = 0.3015,p < 0.001), and Esgg (3 = 0.2480,p < 0.001) all
have positive coefficients and are highly significant. Similarly for long length of stay, we find that
Tso5 (8 = 0.0163,p < 0.001), Esg5.<09 (8 = 0.2872,p < 0.001), and Esgg (5 = 0.1236,p < 0.001)
are positively and significantly associated. In the UCMC test dataset (where percentiles are
based on statistics from the UCMC data), T>gs (3 = 0.0148, p < 0.001), E>g5.<g9 (3 = 0.1684,p <
0.001), and Esgg (4 = 0.4798,p < 0.001) all associate with inpatient mortality. Similarly, T>g5
B = 0.0165,p < 0.001), Esgs.<90 (8 = 0.1292,p < 0.001), and Esg9 (8 = 0.4727,p < 0.001)
associate positively with long length of stay.

~~
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Figure 3. Timeline highlighted by tokenwise context-aware information for MIMIC hospitalization
26886976 (first 210 tokens). This female of unknown race and ethnicity was admitted to the ED at
age ~ 73. Her 12 day 2 hour hospital stay ended in death. After the stay, she subsequently received
ICD-10 diagnoses A4189 for ‘Other specified sepsis’, R6521 for ‘Severe sepsis with septic shock’, and
N179 for ‘Acute kidney failure, unspecified’, in addition to other diagnoses (full list in appendix). After
the patient received a low Richmond Agitation-Sedation Scale score [42, RASS] with (ASMT_rass, Q1)
indicating a high likelihood of coma, the model finds the administration of the Confusion Assessment
Method [22, CAM] (ASMT_cat_cam_loc) to evaluate delirium to be surprising/ informative. The model
also finds the high arterial PCOgy (LAB_pco2_arterial, Q9) to be of interest.

4.3. Informative tokens tend to result in larger changes to a patient’s latent
representation

In our MIMIC test set, a simple linear regression for A; from (5) given informativeness
Lz <) yields § = 0.548,p < 0.001 with R? = 0.212. For a breakdown of average A, vs. average
informativeness by token type, see Figure 5. Positioning and transfer tokens tend to carry less
information, while assessment, lab, and quantile Q tokens tend to carry more.

At the level of events ., a regression for path length A,., from (6) given event-level
informativeness I, (2. |z <) yields B =2.081,p < 0.001 with R? = 0.997. More informative events
trace out longer paths in representation space. Perhaps surprisingly, there does not appear
to be a strong linear relationship between event informativeness and total distance moved in
representation space during the course of an event ., i.e. |R(z1.5) — R(z1.0-1)]-
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Figure 4. Timeline highlighted by tokenwise context-aware information for MIMIC hospitalization
29022625 (first 210 tokens). This ~ 55 year old white female had previously been seen for a myriad
of conditions (see appendix). After a a 30 day 20 hour stay, she received new diagnoses of K2211
for ‘Ulcer of esophagus with bleeding’, J9601 for ‘Acute respiratory failure with hypoxia’, J9602
for ‘Acute respiratory failure with hypercapnia’, A419 for ‘Sepsis, unspecified organism’, J90 for
‘Pleural effusion, not elsewhere classified’, E872 for ‘Acidosis’, and J95851 for ‘Ventilator associated
pneumonia’, among others. The model notices that the Braden scores seem implausibly high, and
highlights the hypercarbia (LAB_pco2_arterial, Q9). It seems to miss the hypoxia (VTL_spo2, Q0);
however, SPO5 readings up to 93.0 are placed in decile QO so this may be due to the tokenization
strategy. The model also emphasizes the patient’s rising blood pressure (VIL_sbp) over time.

4.4. Redacting informative events significantly reduces prognostic ability

Results from our redaction experiment (described in §3.8) indicate that dropping highly
informative events from a patient’s timeline significantly impairs representation-based classifier
performance in the MIMIC test set. For ROC-AUC, we find statistically significant performance
disparities when dropping as few as 20% of the most informative events. Conversely, events
carrying little information can readily be dropped from a timeline without significantly
impacting predictive performance. For representation-based logistic regression models trained
on the MIMIC training set, predictive performance on the MIMIC and UCMC test sets
are available in Table 1. In addition to ROC-AUC, we report PR-AUC, the area under the
precision-recall curve, and the Brier score,® which corresponds to the mean squared error
between predicted probabilities and boolean realizations in Appendix E. Higher ROC-AUC
and PR-AUC values and lower Brier scores correspond to better performing models.
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5. Discussion

In this work, we developed a method to quantify the informativeness of clinical events as
observed in EHRs based on their tokenized representation®. We found that highly informative
tokens can correspond to measurements of clinical significance, to clinician-initiated events or lab
orders, and in some cases to records that seem prima facie to be data-entry errors.3? Tokens that
carry more information tend to precipitate larger changes in a patient’s latent representation
and events that carry more information tend to have longer paths in representation space.
Counts of highly informative / surprising tokens and events in the first 24 hours of a patient’s
stay relate to an increased risk of future negative outcomes like death or long length-of-stay.
Redacting highly informative events reduces the predictive performance of representation-based
classifiers, while redacting a fraction of relatively uninformative events tends to not result in
significant performance drops.

5.1. Broad applicability beyond clinical prediction

The foundation model-derived informativeness measure extends well beyond traditional clinical
prediction tasks and opens new avenues for AI applications to healthcare. This context-
aware information quantification provides a principled framework for addressing downstream
challenges that have historically relied on heuristic approaches.

Our informativeness metric could provide a data-driven solution to clinical alarm fatigue by
implementing dynamic alerting systems that prioritize notifications based on contextual surprise
rather than static thresholds. For example, a blood pressure of 118/86 mmHg might be routine
in most contexts, but could be highly informative if it represents a rapid drop in a patient

PShannon famously estimated the average information content of words in written English to be
around 11.82 bits [44, Eq. 7]. Under the assumption that our model p trained on the MIMIC training
set adequately approximates the empirical distribution p, we can average Ip(z¢|x<;) over z; in the
MIMIC test set to roughly approximate that tokens in our timelines carry around 21.23 bits of
information on average.



Table 1. ROC-AUC for the two classification tasks on ICU patients in the MIMIC and UCMC
test sets. Stars correspond to the significance level of a hypothesis test against the one-sided
alternative that the model trained on the original data performs better. A single asterisk *
corresponds to p < 0.05, two ** to p < 0.01 and three *x* to p < 0.001.

version Inpatient mortality Long length-of-stay
method pct. MIMIC UCMC MIMIC UCMC
original —  0.869 4 0.009 0.839 £ 0.013 0.740 £ 0.008 0.661 £+ 0.011
10 0.860 £ 0.010 0.830 £ 0.013 0.735 £ 0.009 0.671 £0.011
to 20 0.848£0.011 *x  0.814 £ 0.014 *x  0.726 £ 0.009 **  0.653 = 0.012
P 30 0.833£0.012 *xx 0.812+0.013 *x 0.720 £ 0.009 **  0.642 £ 0.011 *
40  0.823 £ 0.011 **x 0.818 £0.012 *  0.714 £ 0.009 **x  0.649 £ 0.012
10 0.867 +£0.010 0.834 £ 0.011 0.736 £ 0.012 0.659 £ 0.013
bottom 20 0.866 + 0.009 0.834 £ 0.012 0.732 £ 0.010 0.667 + 0.012
oo 30  0.862+0.011 0.829 £ 0.012 0.726 £ 0.009 * 0.667 £ 0.013
40  0.859 £0.012 0.829 £ 0.011 0.724 + 0.008 **x  0.664 +0.011
10 0.866 £+ 0.008 0.838 £0.012 0.737 £ 0.006 0.664 £ 0.012
random 20 0.863 £ 0.008 0.835 £ 0.011 0.733 £ 0.009 0.667 £ 0.012
anco 30  0.865+0.010 0.835+0.014 0.728 £ 0.007 0.674 £ 0.009
40  0.861 £0.011 0.835 £ 0.011 0.727 £ 0.008 * 0.674 £ 0.011

being treated for an ischemic stroke or hypertensive emergency. In these conditions, a slower
reduction in blood pressure is preferred to avoid complications, making a rapid drop worthy of
alerting a clinician. Traditional rule-based clinical decision support alerts would likely consider
this a normal reading and therefore fail to identify a potentially concerning change. This ability
to interpret context is what demonstrates the value of foundation model approaches,?' as
they can differentiate this alarming event from a similar, but clinically appropriate, change in
another patient.

The ability to detect data entry errors represents another valuable application. Traditional
validation of data entry quality is dedicated to verification of abnormal values, but our approach
could identify contextually implausible entries that fall within normal ranges. Overall, surprise
quantification could help automate much of the manual chart review process currently required
for quality assurance.

For clinical research, informativeness patterns could enable novel patient phenotyping
approaches. Rather than relying on pre-specified diagnostic codes, researchers could identify
patient subgroups characterized by similar patterns of surprising events, potentially revealing
previously unrecognized disease subtypes or complex pathologies difficult to capture with
traditional algorithms. So-called events-based models!4*® have already proven remarkably
effective at both subtyping and staging neurodegenerative disease,®5"%” but could in the future
find broader applications.

At the health system level, patterns of informativeness could inform resource allocation
decisions. Units characterized by high rates of surprising events might require additional
staffing or monitoring capabilities. Our finding that surprising events correlate with negative



outcomes suggests informativeness patterns could serve as early warning indicators for periods
of increased clinical risk.

Finally, cases highlighted by our informativeness measure could serve as valuable educational
resources. Clinical scenarios with high-information events represent situations where standard
protocols might be insufficient, making them ideal for training clinicians to recognize complex
presentations.

Quantifying the information in EHRs could help clinicians quickly detect anomalous events
and identify data entry errors. FMs trained on tokenized EHRs have already demonstrated
remarkably good performance on prognostic tasks. Finding ways to better understand and
interpret predictions made from these models through informativeness quantification represents
a significant step toward more transparent and actionable clinical Al systems.

The broad applicability of this informativeness framework across diverse healthcare chal-
lenges suggests that context-aware information quantification could become a foundational
tool for healthcare analytics, complementing traditional approaches with a more nuanced
understanding of clinical surprise and significance.

Data and code availability

The MIMIC-IV-3.1 dataset?? is available to credentialed users on Physionet.!> The UCMC
dataset is available in the CLIF format for federated, privacy-preserving analyses. Reasonable
requests may be directed to WFP. Code to reproduce the results found in this manuscript is
available on Github®. The appendix contains: (A) a list of all tokens used in our vocabulary,
(B) the cutoffs for each category that received category-value tokenization, (C) 5 example
highlighted tokenized timeline snippets from MIMIC along with subsequent diagnostic outcomes,
(D) 5 examples from UCMC, and (E) a complete listing of results from our redaction experiment.
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Appendix A. Vocabulary

Our vocabulary consisted of 208 tokens, broken down by token type as follows:

Deciles (10)
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, @8, Q9

Special (6)
TL_START, TL_END, PAD, TRUNC, None, nan

Race (7)

RACE white, RACE_unknown, RACE other, RACE black or_african_american, RACE asian,
RACE _american_indian or_alaska native,
RACE native_hawaiian or_other_pacific_islander

Ethnicity (3)
ETHN_non-hispanic, ETHN_unknown, ETHN_hispanic

Sex (2)
SEX_female, SEX_male

Admission (9)

ADMN_ew_emer ., ADMN_eu_observation, ADMN_urgent, ADMN_surgical _same_day_admission,
ADMN_direct_emer., ADMN_direct_observation, ADMN_ambulatory_observation,
ADMN _observation_admit, ADMN elective

Discharge (12)

DSCG_hospice, DSCGmissing, DSCG_acute_inpatient_rehab_facility, DSCG_home,
DSCG_expired, DSCG_other, DSCG_skilled nursing facility_(snf),
DSCG_against medical_advice_(ama), DSCG_long term care hospital_(ltach),
DSCG_acute_care_hospital, DSCG_psychiatric_hospital, DSCG_assisted_living

Transfer (8)

ADT_ed, ADT_ward, ADT_icu, ADT_1&d, ADT_psych, ADT_stepdown, ADT_other,
ADT procedural

Labs (45)

LAB_hemoglobin, LAB_platelet_count, LAB_bicarbonate, LAB_chloride, LAB_creatinine,
LAB_glucose_serum, LAB_ magnesium, LAB_potassium, LAB_sodium, LAB_bun, LAB_inr,



LAB pt, LAB_ptt, LAB_basophils_percent, LAB_eosinophils_percent,
LAB_lymphocytes_percent, LAB. monocytes_percent, LAB neutrophils_percent,

LAB basophils_absolute, LAB_albumin, LAB _ferritin, LAB_troponin t,
LAB_calcium_total, LAB_phosphate, LAB_alt, LAB_alkaline phosphatase, LAB_ast,
LAB_bilirubin_total, LAB_1dh, LAB_lactate, LAB_pco2_arterial, LAB_ph_arterial,
LAB_po2_arterial, LAB_bilirubin_conjugated, LAB_bilirubin_unconjugated,

LAB total protein, LAB_calcium_ionized, LAB_so2 arterial, LAB_crp, LAB_esr, LAB_wbc,
LAB_ph_venous, LAB_pco2_venous, LAB_so2_mixed_venous, LAB_so2_central_venous

Vitals (9)

VTL_spo2, VTL_sbp, VTL_map, VTL_weight kg, VTL_dbp, VTL_heart_rate,
VIL_respiratory_rate, VIL_height_cm, VTL_temp_c

Medicines (46)

MED_dextrose, MED_dobutamine, MED norepinephrine, MED_vasopressin,
MED_phenylephrine, MED_magnesium, MED_propofol, MED_insulin, MED_octreotide,
MED_epinephrine, MED_pantoprazole, MED_morphine, MED nicardipine, MED_fentanyl,
MED_sodium bicarbonate, MED diltiazem, MED dexmedetomidine, MED _amiodarone,
MED_heparin, MED midazolam, MED_cisatracurium, MED_hydromorphone, MED_tpn,

MED milrinone, MED_eptifibatide, MED_dopamine, MED_argatroban, MED_lidocaine,
MED_furosemide, MED_rocuronium, MED_vecuronium, MED_pentobarbital, MED_esmolol,
MED_labetalol, MED nitroprusside, MED angiotensin, MED ketamine, MED clevidipine,
MED_lorazepam, MED_bumetanide, MED naloxone, MED_procainamide, MED_aminocaproic,
MED_aminophylline, MED_treprostinil, MED_epoprostenol

Assessments (32)

ASMT _gcs_total, ASMT_gcs_motor, ASMT_gcs_verbal, ASMT_gcs_eye, ASMT rass,

ASMT braden_activity, ASMT_braden_friction, ASMT_braden_mobility,

ASMT _braden moisture, ASMT _braden_nutrition, ASMT_braden_sensory,

ASMT braden total, ASMT cat_cam loc, ASMT cat_cam inattention, ASMT cat_cam mental,
ASMT _cat_cam_total, ASMT_cat_cam_thinking, ASMT_val_yes, ASMT_val _positive,
ASMT_val no, ASMT_val negative, ASMT_val_unable_to_assess,

ASMT val no_(stop_--_not_delirious), ASMT_val_language barrier,

ASMT val preexisting advanced dementia, ASMT val_yes_(continue),

ASMT val unable_to_assess_(stop), ASMT_val_yes_(3_or_more_errors,_then_continue),
ASMT val no_(less_than_3_errors_-_stop_—_not_delirious),
ASMT_cat_sbt_delivery_pass_fail, ASMT_val_pass, ASMT_val_fail

Respiratory (18)

RESP_mode _None, RESP mode_assist_control-volume control,
RESP _mode_pressure_support/cpap, RESP_mode _pressure-regulated _volume_control,



RESP_mode_other, RESP_mode_volume_support, RESP_mode_simv, RESP_mode_blow_by,
RESP_mode_pressure_control, RESP_devc_nasal_cannula, RESP_devc_imv, RESP_devc_None,
RESP_devc_face_mask, RESP_devc_high _flow_nc, RESP_devc_nippv,
RESP_devc_trach_collar, RESP_devc_other, RESP_devc_cpap

Positioning (1)
POSN_prone



Appendix B. Decile cutoffs

This section contains tables corresponding to the 9 cutoffs for the 10 deciles. Values corre-
sponding to each category were binned using the cutoffs C1 < C2 < C3 <--- < (9. Values in
(—o0,Cy) were assigned to QO, values in [C}, C2) to Q1, values in [C2,C3) to Q2, and so on, up
to values in [Cy, 00), which were assigned to Q9.

Table B1. Decile cutoffs for age at admission.

category Cl CQ Cg 04 C5 CG 07 Cg Cg
age_at_admission 30.0 40.0 49.0 55.0 61.0 66.0 71.0 77.0 84.0

Table B2. Decile cutoffs for vitals.

category &) Cy Cs Cy Cs Cs Cr Cs Cy
VTL_spo2 93.0 950 96.0 96.0 970 98.0 99.0 100.0 100.0
VTL_sbp 93.0 100.0 106.0 111.0 117.0 123.0 129.0 138.0 150.0
VTL_map 61.0 66.0 700 73.0 770 810 8.0 91.0 100.0
VTL_weight_kg 58.2 659 716 770 827 8.7 953 103.7 116.7
VTL_dbp 46.0 50.0 54.0 5H8.0 61.0 650 69.0 T4.0 83.0
VTL_heart_rate 64.0 70.0 76.0 80.0 8.0 90.0 95.0 101.0 111.0
VTL_respiratory_rate 13.0 15.0 17.0 180 19.0 21.0 23.0 25.0 28.0
VTL_height_cm 155.0 160.0 163.0 168.0 170.0 173.0 175.0 178.0 183.0
VTL_temp_c 36.3 36.5 36.7 36.8 369 371 372 374 378

Table B3. Decile cutoffs for assessments.

category Cl Cg 03 C4 C5 06 C7 Cg Cg
ASMT _ges_total 13.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
ASMT _gcs_motor 30 50 60 6.0 6.0 60 6.0 6.0 6.0
ASMT _ges_verbal 00 00 00 10 40 50 50 5.0 5.0
ASMT _gcs_eye 1.0 3.0 30 40 40 40 40 4.0 4.0
ASMT _rass -40 -20 -10 -10 00 00 0.0 0.0 1.0

ASMT _braden_activity 1.0 10 10 10 10 1.0 20 20 3.0
ASMT _braden_friction 1.0 20 20 20 20 20 20 3.0 3.0
ASMT _braden_mobility 1.0 20 20 20 20 30 30 30 30
ASMT _braden_moisture 3.0 3.0 3.0 3.0 3.0 40 40 4.0 4.0
ASMT _braden_nutrition 2.0 2.0 20 20 20 30 30 30 3.0
ASMT _braden_sensory 20 20 20 30 30 30 30 40 4.0
ASMT _braden_total 11.0 12.0 13.0 14.0 14.0 15.0 16.0 17.0 19.0




Table B4. Decile cutoffs for labs.

category 01 02 03 04 05 06 07 Cg Cg
LAB_hemoglobin 7.6 8.2 8.7 9.2 9.8 105 11.1 11.9 13.0
LAB_platelet_count 70.0 119.0 152.0 180.0 206.0 234.0 266.0 310.0 387.0
LAB_bicarbonate 20.0 22.0 23.0 24.0 250 260 27.0 28.0 30.0
LAB _chloride 95.0 98.0 100.0 101.0 102.0 104.0 105.0 107.0 109.0
LAB_creatinine 0.5 0.7 0.7 0.8 0.9 1.1 1.3 1.7 2.8
LAB_glucose_serum 85.0 93.0 100.0 107.0 115.0 125.0 138.0 157.0 194.0
LAB_magnesium 1.7 1.8 1.9 1.9 2.0 2.1 2.1 2.2 2.4
LAB_potassium 3.5 3.7 3.8 4.0 4.1 4.2 4.4 4.6 4.9
LAB_sodium 132.0 135.0 136.0 137.0 138.0 139.0 140.0 142.0 144.0
LAB_bun 8.0 11.0 130 16.0 19.0 23.0 28.0 37.0 54.0
LAB._inr 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.9 2.4
LAB_pt 114 121 128 134 142 152 169 20.1 26.3
LAB_ptt 26.0 281 299 319 346 389 476 61.1 78.7
LAB _basophils_percent 0.0 0.0 0.0 0.2 0.2 0.3 0.4 0.6 1.0
LAB _eosinophils_percent 0.0 0.0 0.1 0.4 1.0 1.3 2.0 3.0 4.7
LAB_lymphocytes_percent 4.0 6.9 9.3 120 152 19.0 239 30.9 45.0
LAB_monocytes_percent 1.8 3.0 4.3 5.3 6.3 7.4 8.8 10.4 13.9
LAB _neutrophils_percent 30.0 51.7 60.5 66.7 717 76.0 80.05 84.3 89.0
LAB _basophils_absolute 0.0 0.0 0.0 0.01 0.02 0.03 0.04 0.05 0.07
LAB_albumin 2.3 2.6 2.9 3.0 3.2 3.4 3.6 3.8 4.1
LAB ferritin 43.0 90.0 149.0 224.0 325.0 468.0 692.0 1085.0 2000.0
LAB_troponin_t 10.0 10.0 10.0 10.0 20.0 50.0 100.0 220.0 670.0
LAB _calcium_total 7.8 8.1 8.3 8.5 8.7 8.8 9.0 9.2 9.5
LAB _phosphate 2.3 2.7 3.0 3.2 3.4 3.7 3.9 4.3 4.9
LAB_alt 10.0 14.0 180 220 28.0 37.0 51.0 77.0 151.0
LAB_alkaline_phosphatase 54.0 65.0 76.0 87.0 101.0 119.0 145.0 190.0 296.0
LAB_ast 14.0 180 220 270 34.0 43.0 57.0 82.0 148.0
LAB _bilirubin_total 0.2 0.3 0.4 0.5 0.6 0.8 1.2 2.1 5.3
LAB_dh 151.0 175.0 197.0 221.0 248.0 283.0 333.0 419.0 628.0
LAB_lactate 0.9 1.1 1.3 1.5 1.7 2.0 2.4 3.0 4.4
LAB_pco2_arterial 31.0 350 37.0 390 41.0 43.0 46.0 50.0 58.0
LAB_ph_arterial 726 731 734 736 7.38 74 7.42 7.44 7.47
LAB_po2_arterial 46.0 67.0 79.0 90.0 102.0 116.0 137.0 170.0  259.0
LAB_bilirubin_conjugated 0.2 0.3 0.4 0.7 1.1 1.8 2.8 4.6 8.2
LAB_bilirubin_unconjugated 0.3 0.4 0.6 0.8 1.0 1.3 1.7 2.4 4.1
LAB_total_protein 4.8 5.2 5.4 5.7 5.9 6.1 6.3 6.6 7.1
LAB_calcium _ionized 4.04 4.2 4.32 44 448 456  4.68 4.76 4.96
LAB_so2_arterial 57.0  66.0 T77.0 91.0 940 96.0 97.0 97.0 98.0
LAB_crp 2.7 7.0 138 302 4777 69.8 989 141.9 213.92
LAB_esr 6.0 14.0 230 33.0 450 59.0 74.0 92.0 116.0
LAB_wbc 2.6 3.6 4.4 5.2 6.0 7.0 8.3 10.1 13.6
LAB_ph_venous 724 729 732 735 737 739 741 7.43 7.46
LAB _pco2_venous 320 36.0 39.0 42.0 450 48.0 52.0 58.0 68.0
LAB_s02_mixed_venous 52.0 57.0 600 63.0 650 68.0 700 73.0 78.0
LAB_s02_central_venous 50.0 57.0 620 67.0 71.0 T4.0 780 81.0 86.0




Table B5. Decile cutoffs for medicines.
category 01 CQ 03 04 05 C@ 07 Cg 09
MED _dextrose 0.0 2.0 518 8.21 10.65 14.94 20.78  31.09 50.03
MED _dobutamine 0.0 2.0 2.5 2.5 4.27 5.0 5.01 7.33 8.05
MED _norepinephrine 0.01 0.03 0.05 0.06 0.09 0.12 0.15 0.2 0.3
MED _vasopressin 0.0 0.0 1.2 1.21 1.81 2.4 2.4 2.4 3.59
MED _phenylephrine 0.0 027 045 0.5 0.76 1.0 1.26 1.86 2.93
MED_magnesium 0.0 0.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
MED _propofol 0.0 10.04 20.0 24.97 30.05 39.11 40.48  50.11 60.2
MED _insulin 0.0 1.0 2.0 299 3.0 4.0 5.0 6.52 9.41
MED _octreotide 0.0 0.0 49.98 50.0 50.0 50.0 50.02  50.17 50.35
MED _epinephrine 0.0 0.01 0.02 0.03 0.04 0.05 0.08 0.13 0.3
MED _pantoprazole 0.0 0.0 8.0 8.0 8.0 8.0 8.0 8.03 8.07
MED _morphine 0.0 0.0 2.0 2.0 4.0 5.0 6.0 10.0 14.98
MED _nicardipine 0.0 0.5 0.5 1.0 1.0 1.5 1.97 2.02 3.0
MED _fentanyl 0.0 25.0 50.0 50.05 75.04 100.0 125.02  151.8 209.3
MED_sodium_bicarbonate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MED _diltiazem 0.0 4.99 5.0 5.01 9.99 10.0 10.05  14.99 15.02
MED _dexmedetomidine 0.0 0.4 0.4 0.6 0.7 0.81 1.0 1.2 1.4
MED _amiodarone 0.0 0.0 0.5 0.5 0.5 0.5 1.0 1.0 1.0
MED_heparin 0.0 0.0 650.2 867.9 1030.65 1200.23 1400.31 1612.9 1985.37
MED _midazolam 0.0 0.5 1.0 2.0 2.01 3.04 4.04 6.01 10.01
MED _cisatracurium 0.0 0.06 0.1 0.13 0.15 0.18 0.2 0.25 0.3
MED _hydromorphone 0.25 1.0 1.11 2.0 2.5 3.02 4.0 4.5 7.03
MED_tpn 0.0 0.0 0.0 421 58.3 63.95 72.9  80.83 91.03
MED _milrinone 0.0 0.13 025 0.25 0.25 0.38 0.38 0.5 0.5
MED _eptifibatide 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 2.02
MED_dopamine 0.0 2.0 3.0 4.0 5.0 5.98 7.58  10.01 14.02
MED _argatroban 0.0 0.1 0.5 0.69 1.0 1.25 1.72 2.36 3.44
MED _lidocaine 0.0 0.0 0.5 1.0 1.0 1.0 1.0 2.0 2.0
MED _furosemide 0.0 1.5 4.0 5.0 8.0 10.0 14.05  19.96 20.2
MED _rocuronium 0.0 6.01 8.0 8.01 8.02 8.09 9.03 10.01 11.06
MED _vecuronium 0.0 0.0 0.03 0.05 0.05 0.05 0.05 0.08 0.1
MED_pentobarbital 0.0 0.5 1.0 1.82 2.12 3.01 3.95 4.99 5.24
MED _esmolol 0.0 4831 50.1 81.07 100.35 143.33 155.25 200.93  257.79
MED _labetalol 0.0 0.5 0.5 1.0 1.0 1.5 2.0 2.5 3.75
MED _nitroprusside 0.0 0.3 0.5 0.6 0.8 1.0 1.4 1.81 2.42
MED _angiotensin 0.0 0.02 0.04 5.01 20.0 20.02 34.99  40.03 52.09
MED _ketamine 0.1 0.2 0.3 0.4 0.5 0.63 0.9 1.14 1.39
MED _clevidipine 0.51 2.0 217 4.0 4.99 6.02 8.01 10.04 14.0
MED _lorazepam 0.0 0.5 1.0 2.0 2.01 3.0 4.0 5.0 6.7
MED_bumetanide 0.5 1.0 2.0 2.0 2.02 2.21 3.06 4.0 4.08
MED _naloxone 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.3
MED _procainamide 0.0 0.5 1.5 2.0 2.02 4.02 4.08 5.0 5.0
MED _aminocaproic 0.0 0.0 0.5 1.0 1.0 1.0 1.01 4.0  1000.0
MED_aminophylline 0.21 0.3 0.3 0.3 0.3 0.3 0.3 0.36 0.4
MED _treprostinil 0.0 0.03 0.78 6.0 9.02 11.12 14.16 17.0 21.15
MED _epoprostenol 0.05 6.05 29.07 42.0 42.0 42.01 42.02  42.14 42.26




Appendix C. Example timelines from MIMIC
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Figure C1. Tokenwise context-aware information for the first 210 tokens of MIMIC hospitalization
24640534. (Reproduces Figure 2 with detailed caption.) This white, non-Hispanic male of age ~ 60
was admitted to the ED for observation. He had no previous admission history within MIMIC. His
stay was 37 days 22 hours in duration. After the stay, he subsequently received ICD-10 diagnoses
(9200 for ‘Acute myeloblastic leukemia, not having achieved remission’, 1214 for ‘Non-ST elevation
(NSTEMI) myocardial infarction’, D701 for ‘Agranulocytosis secondary to cancer chemotherapy’,
E222 for ‘Syndrome of inappropriate secretion of antidiuretic hormone’;, J8410 for ‘Pulmonary fibrosis,
unspecified’, K1231 for ‘Oral mucositis (ulcerative) due to antineoplastic therapy’, T451X5A for
‘Adverse effect of antineoplastic and immunosuppressive drugs, initial encounter’, Y92230 for ‘Patient
room in hospital as the place of occurrence of the external cause’, F4323 for ‘Adjustment disorder
with mixed anxiety and depressed mood’, R5081 for ‘Fever presenting with conditions classified
elsewhere’, F329 for ‘Major depressive disorder, single episode, unspecified’, F952 for ‘Tourette’s
disorder’, K219 for ‘Gastro-esophageal reflux disease without esophagitis’, F17210 for ‘Nicotine
dependence, cigarettes, uncomplicated’, R740 for ‘Nonspecific elevation of levels of transaminase and
lactic acid dehydrogenase [LDH]’, R918 for ‘Other nonspecific abnormal finding of lung field’, Z006 for
‘Encounter for examination for normal comparison and control in clinical research program’, R2241
for ‘Localized swelling, mass and lump, right lower limb’, Z806 for ‘Family history of leukemia’, R197
for ‘Diarrhea, unspecified’, 12510 for ‘Atherosclerotic heart disease of native coronary artery without
angina pectoris’, and R21 for ‘Rash and other nonspecific skin eruption’.
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Figure C2. Tokenwise context-aware information for the first 210 tokens of MIMIC hospitalization
26886976. (Reproduces Figure 3 with detailed caption.) This female of unknown race and ethnicity
was admitted to the ED at age ~ 73. Her 12 day 2 hour hospital stay ended in death. After the stay,
she subsequently received ICD-10 diagnoses A4189 for ‘Other specified sepsis’, R6521 for ‘Severe
sepsis with septic shock’, J9601 for ‘Acute respiratory failure with hypoxia’, J690 for ‘Pneumonitis
due to inhalation of food and vomit’, K810 for ‘Acute cholecystitis’, E&72 for ‘Acidosis’, D689 for
‘Coagulation defect, unspecified’, N179 for ‘Acute kidney failure, unspecified’, N390 for ‘Urinary tract
infection, site not specified’, G9340 for ‘Encephalopathy, unspecified’, E870 for ‘Hyperosmolality
and hypernatremia’, F05 for ‘Delirium due to known physiological condition’, Z66 for ‘Do not
resuscitate’, Z515 for ‘Encounter for palliative care’, 110 for ‘Essential (primary) hypertension’, E119
for ‘Type 2 diabetes mellitus without complications’, E039 for ‘Hypothyroidism, unspecified’, K82A1
for ‘Gangrene of gallbladder in cholecystitis’, D696 for ‘Thrombocytopenia, unspecified’, K219 for
‘Gastro-esophageal reflux disease without esophagitis’, F1010 for ‘Alcohol abuse, uncomplicated’,
E8339 for ‘Other disorders of phosphorus metabolism’, E8770 for ‘Fluid overload, unspecified’, B964
for ‘Proteus (mirabilis) (morganii) as the cause of diseases classified elsewhere’, and K7460 for
‘Unspecified cirrhosis of liver’.
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Figure C3. Tokenwise context-aware information for the first 210 tokens of MIMIC hospitalization
29022625. (Reproduces Figure 4 with detailed caption.) This ~ 55 year old white female had previously
been seen for a myriad of conditions (see following page). After a a 30 day 20 hour stay, she received new
diagnoses: K2211 for ‘Ulcer of esophagus with bleeding’, J690 for ‘Pneumonitis due to inhalation of food
and vomit’, J9601 for ‘Acute respiratory failure with hypoxia’, J9602 for ‘Acute respiratory failure with
hypercapnia’, A419 for ‘Sepsis, unspecified organism’, J90 for ‘Pleural effusion, not elsewhere classified’,
E872 for ‘Acidosis’, J95851 for ‘Ventilator associated pneumonia’, J939 for ‘Pneumothorax, unspecified’,
E2749 for ‘Other adrenocortical insufficiency’, E871 for ‘Hypo-osmolality and hyponatremia’, 1313
for ‘Pericardial effusion (noninflammatory)’, G9340 for ‘Encephalopathy, unspecified’, A0471 for
‘Enterocolitis due to Clostridium difficile, recurrent’, K222 for ‘Esophageal obstruction’, R1319 for
‘Other dysphagia’, 1480 for ‘Paroxysmal atrial fibrillation’, E890 for ‘Postprocedural hypothyroidism’,
D630 for ‘Anemia in neoplastic disease’, E1165 for ‘Type 2 diabetes mellitus with hyperglycemia’, 1952
for ‘Hypotension due to drugs’, T4275XA for ‘Adverse effect of unspecified antiepileptic and sedative-
hypnotic drugs, initial encounter’, K5903 for ‘Drug induced constipation’, T40605A for ‘Adverse effect
of unspecified narcotics, initial encounter’, T424X5A for ‘Adverse effect of benzodiazepines, initial
encounter’, E875 for ‘Hyperkalemia’, and E11649 for ‘Type 2 diabetes mellitus with hypoglycemia
without coma’.



Previous diagnoses for MIMIC hospitalization 29022625 (see Figure C3): K9422 for ‘Gastrostomy
infection’, N179 for ‘Acute kidney failure, unspecified’, 15032 for ‘Chronic diastolic (congestive) heart
failure’, J9612 for ‘Chronic respiratory failure with hypercapnia’, I82C12 for ‘Acute embolism and
thrombosis of left internal jugular vein’, C155 for ‘Malignant neoplasm of lower third of esophagus’,
C770 for ‘Secondary and unspecified malignant neoplasm of lymph nodes of head, face and neck’,
Q211 for ‘Atrial septal defect’, R64 for ‘Cachexia’, 1.L03311 for ‘Cellulitis of abdominal wall’, 12510 for
‘Atherosclerotic heart disease of native coronary artery without angina pectoris’, Z955 for ‘Presence of
coronary angioplasty implant and graft’, E785 for ‘Hyperlipidemia, unspecified’, F17210 for ‘Nicotine
dependence, cigarettes, uncomplicated’, J449 for ‘Chronic obstructive pulmonary disease, unspecified’,
79981 for ‘Dependence on supplemental oxygen’, Z953 for ‘Presence of xenogenic heart valve’, F419 for
‘Anxiety disorder, unspecified’, F329 for ‘Major depressive disorder, single episode, unspecified’, M109
for ‘Gout, unspecified’, Z8571 for ‘Personal history of Hodgkin lymphoma’, E039 for ‘Hypothyroidism,
unspecified’, 1340 for ‘Nonrheumatic mitral (valve) insufficiency’, E1122 for ‘Type 2 diabetes mellitus
with diabetic chronic kidney disease’, N189 for ‘Chronic kidney disease, unspecified’, Z794 for ‘Long
term (current) use of insulin’, Z6820 for ‘Body mass index [BMI] 20.0-20.9, adult’, Y833 for ‘Surgical
operation with formation of external stoma as the cause of abnormal reaction of the patient, or of later
complication, without mention of misadventure at the time of the procedure’, Y92009 for ‘Unspecified
place in unspecified non-institutional (private) residence as the place of occurrence of the external
cause’, B372 for ‘Candidiasis of skin and nail’, E1151 for ‘Type 2 diabetes mellitus with diabetic
peripheral angiopathy without gangrene’, Z7901 for ‘Long term (current) use of anticoagulants’,
C155 for ‘Malignant neoplasm of lower third of esophagus’, J9621 for ‘Acute and chronic respiratory
failure with hypoxia’, J9622 for ‘Acute and chronic respiratory failure with hypercapnia’, E43 for
‘Unspecified severe protein-calorie malnutrition’, G9341 for ‘Metabolic encephalopathy’, 15033 for
‘Acute on chronic diastolic (congestive) heart failure’, I82C12 for ‘Acute embolism and thrombosis
of left internal jugular vein’, R7881 for ‘Bacteremia’, J441 for ‘Chronic obstructive pulmonary
disease with (acute) exacerbation’, Q211 for ‘Atrial septal defect’, J9811 for ‘Atelectasis’, R042 for
‘Hemoptysis’, J918 for ‘Pleural effusion in other conditions classified elsewhere’, R112 for ‘Nausea
with vomiting, unspecified’, E860 for ‘Dehydration’, R1310 for ‘Dysphagia, unspecified’, B9689 for
‘Other specified bacterial agents as the cause of diseases classified elsewhere’, N189 for ‘Chronic kidney
disease, unspecified’, Z954 for ‘Presence of other heart-valve replacement’, 12510 for ‘Atherosclerotic
heart disease of native coronary artery without angina pectoris’, Z9861 for ‘Coronary angioplasty
status’, 169998 for ‘Other sequelae following unspecified cerebrovascular disease’, H538 for ‘Other
visual disturbances’, F419 for ‘Anxiety disorder, unspecified’, F329 for ‘Major depressive disorder,
single episode, unspecified’, E1121 for ‘Type 2 diabetes mellitus with diabetic nephropathy’, 1340 for
‘Nonrheumatic mitral (valve) insufficiency’, E1151 for ‘Type 2 diabetes mellitus with diabetic peripheral
angiopathy without gangrene’, 1739 for ‘Peripheral vascular disease, unspecified’, D72829 for ‘Elevated
white blood cell count, unspecified’, D649 for ‘Anemia, unspecified’, E039 for ‘Hypothyroidism,
unspecified’, Z03818 for ‘Encounter for observation for suspected exposure to other biological agents
ruled out’, Z6821 for ‘Body mass index [BMI] 21.0-21.9, adult’, E785 for ‘Hyperlipidemia, unspecified’,
D563 for ‘Thalassemia minor’, M1A9XXO0 for ‘Chronic gout, unspecified, without tophus (tophi)’,
7720 for ‘Tobacco use’, and T451X5A for ‘Adverse effect of antineoplastic and immunosuppressive
drugs, initial encounter’.



[NTEISTARTINNN ~ RACE white | ETHN nonchispanic ~  SEXmale [ Q7 | ADMN eu observation 30
[INTUADTE@NINN  LAB hemoglobin Q8 | LABplateletcount Q2 LAB basophils percent
LAB_lymphocytes percent LAB_monocytes_percent

LAB_basophils_absolute

||||lo
@

LAB_sodium
25

LAB_platelet_count

0

Figure C4. Tokenwise context-aware information for the first 210 tokens of MIMIC hospitalization
29173149. This ~ 75 year old white male had previously been seen for K388 for ‘Other specified
diseases of appendix’, M4854XA for ‘Collapsed vertebra, not elsewhere classified, thoracic region,
initial encounter for fracture’, G20 for ‘Parkinson’s disease’, G250 for ‘Essential tremor’, R2681
for ‘Unsteadiness on feet’, Z8547 for ‘Personal history of malignant neoplasm of testis’, Z87891 for
‘Personal history of nicotine dependence’, and F329 for ‘Major depressive disorder, single episode,
unspecified’. After a 1 day 14 hour long admission, he received diagnoses: SO003XA for ‘Contusion
of scalp, initial encounter’, W1839XA for ‘Other fall on same level, initial encounter’, Y92091 for
‘Bathroom in other non-institutional residence as the place of occurrence of the external cause’, Z9181
for ‘History of falling’, E785 for ‘Hyperlipidemia, unspecified’, F419 for ‘Anxiety disorder, unspecified’,
7820 for ‘Family history of epilepsy and other diseases of the nervous system’, R319 for ‘Hematuria,
unspecified’, and D696 for ‘Thrombocytopenia, unspecified’.
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Figure C5. Tokenwise context-aware information for the first 210 tokens of MIMIC hospitalization
27267707. This ~ 41 year old female had previously been seen for: N200 for ‘Calculus of kidney’,
G92 for ‘Toxic encephalopathy’, J9610 for ‘Chronic respiratory failure, unspecified whether with
hypoxia or hypercapnia’, G114 for ‘Hereditary spastic paraplegia’, Z930 for ‘Tracheostomy status’,
N1330 for ‘Unspecified hydronephrosis’, N12 for ‘Tubulo-interstitial nephritis, not specified as acute
or chronic’, N3090 for ‘Cystitis, unspecified without hematuria’, Q639 for ‘Congenital malformation of
kidney, unspecified’, G809 for ‘Cerebral palsy, unspecified’, E233 for ‘Hypothalamic dysfunction, not
elsewhere classified’, R110 for ‘Nausea’, Z993 for ‘Dependence on wheelchair’, Z981 for ‘Arthrodesis
status’, N200 for ‘Calculus of kidney’, G800 for ‘Spastic quadriplegic cerebral palsy’, Z9911 for
‘Dependence on respirator [ventilator| status’, J9610 for ‘Chronic respiratory failure, unspecified
whether with hypoxia or hypercapnia’, N1330 for ‘Unspecified hydronephrosis’, N390 for ‘Urinary
tract infection, site not specified’, Z930 for ‘Tracheostomy status’, Q639 for ‘Congenital malformation
of kidney, unspecified’, 2993 for ‘Dependence on wheelchair’, Z981 for ‘Arthrodesis status’, R32 for
‘Unspecified urinary incontinence’, 5920 for ‘Calculus of kidney’, 51883 for ‘Chronic respiratory failure’,
V440 for ‘Tracheostomy status’, 2762 for ‘Acidosis’, 591 for ‘Hydronephrosis’, 3341 for ‘Hereditary
spastic paraplegia’, V463 for ‘Wheelchair dependence’, 28860 for ‘Leukocytosis, unspecified’, 49390
for ‘Asthma, unspecified type, unspecified’, 3159 for ‘Unspecified delay in development’, V454 for
‘Arthrodesis status’, 6268 for ‘Other disorders of menstruation and other abnormal bleeding from
female genital tract’, 3432 for ‘Congenital quadriplegia’, V463 for ‘Wheelchair dependence’, V550
for ‘Attention to tracheostomy’, 49390 for ‘Asthma, unspecified type, unspecified’, 51889 for ‘Other
diseases of lung, not elsewhere classified’, V4611 for ‘Dependence on respirator, status’, 7533 for
‘Other specified anomalies of kidney’, 30981 for ‘Posttraumatic stress disorder’, 5859 for ‘Chronic
kidney disease, unspecified’, and V074 for ‘Hormone replacement therapy (postmenopausal)’. After
a 2 day 19 hour stay, she subsequently received new diagnoses: J208 for ‘Acute bronchitis due to
other specified organisms’, J9621 for ‘Acute and chronic respiratory failure with hypoxia’, E872 for
‘Acidosis’, Z9981 for ‘Dependence on supplemental oxygen’, E2839 for ‘Other primary ovarian failure’,
7905 for ‘Acquired absence of kidney’, J45909 for ‘Unspecified asthma, uncomplicated’, M419 for
‘Scoliosis, unspecified’, M810 for ‘Age-related osteoporosis without current pathological fracture’,
F4310 for ‘Post-traumatic stress disorder, unspecified’, F39 for ‘Unspecified mood [affective] disorder’,
Q632 for ‘Ectopic kidney’, N189 for ‘Chronic kidney disease, unspecified’, 1517 for ‘Cardiomegaly’.



Appendix D. Example timelines from UCMC
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Figure D1. Tokenwise context-aware information for the first 210 tokens of UCMC hospitalization
8797520.
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Figure D2. Tokenwise context-aware information for the first 210 tokens of UCMC hospitalization
27055120.
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Figure D3. Tokenwise context-aware information for the first 210 tokens of UCMC hospitalization
10969205.
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Figure D4. Tokenwise context-aware information for the first 210 tokens of UCMC hospitalization
2974992.
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Figure D5. Tokenwise context-aware information for the first 210 tokens of UCMC hospitalization
20528107.



Appendix E. Full results for the redaction experiments

This section contains all tables of results discussed in §4.4.

Table E1. Performance metrics for inpatient mortality prediction task on ICU patients in
the MIMIC test set. The p-val. columns indicate the results of a hypothesis test for the
corresponding metric against the one-sided alternative that the model trained on the original

data performs better. Blank entries indicate p > 0.1.

version ROC-AUC PR-AUC Brier
method pct. range p-val. range p-val. range p-val.
original —  0.869 £ 0.009 — 0.464 £0.032 — 0.065 £ 0.003 —
10  0.860 + 0.010 0.440 + 0.028 0.088 0.067 + 0.003
¢ 20  0.848 +£0.011 0.003 0.429 +0.031 0.029 0.068 + 0.003
P 30  0.833£0.012 < 0.001 0.3954+0.034 0.001 0.069 +0.004 0.031
40  0.8234+0.011 < 0.001 0.386+0.031 < 0.001 0.070+0.004 0.008
10  0.867 + 0.010 0.465 + 0.025 0.065 + 0.003
bottom 20 0.866 £ 0.009 0.456 + 0.031 0.065 + 0.003
otto 30  0.862+0.011 0.445 + 0.029 0.065 + 0.004
40  0.859 +£0.012 0.451 + 0.030 0.065 + 0.004
10  0.866 + 0.008 0.456 + 0.026 0.066 + 0.002
random 20 0.863 £ 0.008 0.454 + 0.030 0.066 + 0.003
© 30  0.865+£0.010 0.456 + 0.025 0.066 + 0.004
40  0.861 +0.011 0.457 + 0.025 0.065 + 0.003
Table E2. Performance metrics for long length of stay prediction task for ICU patients in the
MIMIC test set. The p-val columns are as in Table E1.
version ROC-AUC PR-AUC Brier
method pct. range p.-val range p.-val range p.-val
original —  0.740 + 0.008 — 0.657+£0.015 — 0.204 £ 0.003 —
10 0.735 % 0.009 0.654 + 0.016 0.206 + 0.003
to 20 0.726 £ 0.009 0.009 0.640+0.014 0.061 0.208 £ 0.004 0.019
P 30  0.720 £ 0.009 0.001 0.633+0.012 0.013 0.211 £0.004 0.001
40  0.714+£0.009 < 0.001 0.638+0.013 0.017 0.212+£0.003 < 0.001
10 0.736 +0.012 0.652 + 0.015 0.206 + 0.005
bottom 20  0.732+£0.010 0.650 + 0.016 0.207 + 0.004
oo 30  0.726 +£0.009 0.018 0.646 + 0.014 0.209 + 0.004 0.032
40  0.724 +£0.008 0.005 0.644 +0.013 0.209 + 0.003 0.013
10 0.737 + 0.006 0.654 + 0.013 0.205 + 0.003
random 20 0.733+£0.009 0.099 0.647 +0.014 0.206 + 0.004
anco 30  0.728 £0.007 0.053 0.647 + 0.011 0.208 + 0.002 0.076
40  0.727 £ 0.008 0.020 0.645+0.014 0.089 0.208 + 0.003 0.034




Table E3. Performance metrics for inpatient mortality prediction task for ICU patients in
the UCMC test dataset. The p-val columns are as in Table E1.

version ROC-AUC PR-AUC Brier
method pct. range p.-val range p.-val range p.-val
original —  0.839 +0.013 — 0.425+£0.036 — 0.087 £ 0.005 —

10 0.830 + 0.013 0.432 + 0.026 0.088 + 0.004

to 20 0.814 +0.014 0.006 0.403 £ 0.029 0.090 + 0.004
P 30 0.812+0.013 0.004 0.395 +£ 0.032 0.093 +0.004 0.016
40 0.818 +£0.012 0.018 0.395+£0.029 0.076 0.094 +0.004 0.006

10 0.834 + 0.011 0.416 + 0.029 0.088 + 0.004

bottom 20 0.834 + 0.012 0.414 + 0.033 0.087 £ 0.005

30 0.829 + 0.012 0.405 + 0.033 0.087 £ 0.005

40 0.829 + 0.011 0.411 +0.031 0.085 + 0.005

10 0.838 + 0.012 0.419 + 0.031 0.086 + 0.005

random 20 0.835 + 0.011 0.413 +0.033 0.087 + 0.004

ando 30 0.835 + 0.014 0.434 + 0.038 0.085 + 0.005

40 0.835 + 0.011 0.426 + 0.028 0.084 + 0.004

Table E4. Performance metrics for long length of stay prediction task for ICU patients in
the UCMC test set. The p-val columns are as in Table E1.

version ROC-AUC PR-AUC Brier
method pct. range p.-val range p.-val range p.-val
original —  0.661 + 0.011 — 0.639+0.016 — 0.235+£0.004 —

10  0.671+0.011 0.657 + 0.017 0.233 + 0.004

to 20  0.653 £0.012 0.635 + 0.016 0.237 + 0.004

P 30  0.642+0.011 0.028 0.6314+0.015 0.239 + 0.004
40  0.649+£0.012 0.094 0.638 +0.017 0.238 £0.004 0.070

10 0.659 +0.013 0.639 £ 0.016 0.235 £ 0.005

bottom 20  0.667 £0.012 0.647 + 0.019 0.231 + 0.004

30  0.667+£0.013 0.646 + 0.016 0.231 + 0.004

40  0.664 +0.011 0.643 + 0.018 0.233 + 0.004

10 0.664 £ 0.012 0.644 + 0.016 0.233 + 0.004

random 20  0.667 £0.012 0.650 + 0.016 0.231 + 0.004

30 0.674 +£0.009 0.654 £ 0.015 0.230 + 0.003

40  0.674 £ 0.011 0.654 + 0.017 0.230 + 0.004




