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970 M. Burkhart et al.

Approximating p(state|observation) as gaussian leads to a new filter-
ing algorithm, the discriminative Kalman filter (DKF), which can perform
well even when p(observation|state) is highly nonlinear and/or nongaus-
sian. The approximation, motivated by the Bernstein–von Mises theorem,
improves as the dimensionality of the observations increases. The DKF
has computational complexity similar to the Kalman filter, allowing it in
some cases to perform much faster than particle filters with similar preci-
sion, while better accounting for nonlinear and nongaussian observation
models than Kalman-based extensions.

When the observation model must be learned from training data prior
to filtering, off-the-shelf nonlinear and nonparametric regression tech-
niques can provide a gaussian model for p(observation|state) that cleanly
integrates with the DKF. As part of the BrainGate2 clinical trial, we suc-
cessfully implemented gaussian process regression with the DKF frame-
work in a brain-computer interface to provide real-time, closed-loop
cursor control to a person with a complete spinal cord injury. In this let-
ter, we explore the theory underlying the DKF, exhibit some illustrative
examples, and outline potential extensions.

1 Introduction

Consider a state-space model for Z1:T := Z1, . . . , ZT (latent states) and
X1:T := X1, . . . , XT (observations) represented as a Bayesian network:

Z1 −→ · · · −→ Zt−1 −→ Zt −→ · · · −→ ZT

↓ ↓ ↓ ↓
X1 Xt−1 Xt XT

. (1.1)

The conditional density of Zt given X1:t can be expressed recursively using
the Chapman-Kolmogorov equation and Bayes’ rule (see Chen, 2003, for
further details):

p(zt |x1:t−1) =
∫

p(zt |zt−1)p(zt−1|x1:t−1) dzt−1, (1.2a)

p(zt |x1:t ) = p(xt |zt )p(zt |x1:t−1)∫
p(xt |zt )p(zt |x1:t−1) dzt

= p(xt |zt )p(zt |x1:t−1)
p(xt |x1:t−1)

, (1.2b)

where p(z0|x1:0) = p(z0) and the conditional densities p(zt |zt−1) and p(xt |zt )
are either specified a priori or learned from training data prior to filtering.
Computing or approximating equation 1.2 is often called Bayesian filter-
ing. Bayesian filtering arises in a large number of applications, including
global positioning systems, target tracking, aircraft and spacecraft guid-
ance, weather forecasting, computer vision, digital communications, and
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The Discriminative Kalman Filter 971

brain-computer interfaces (Chen, 2003; Hall, 1966; Battin & Levine, 1970;
Grewal & Andrews, 2010; Buehner, McTaggart-Cowan, & Heilliette, 2017;
Brown & Hwang, 2012; Schmidt, Weinberg, & Lukesh, 1970; Brandman,
Cash, & Hochberg, 2017).

Exact solutions to equation 1.2 are available only in special cases, such as
the Kalman filter (Kalman, 1960; Kalman & Bucy, 1961). The Kalman filter
models the conditional densities p(zt |zt−1) and p(xt |zt ) as linear and gaus-
sian so that the posterior distribution p(zt |x1:t ) is also gaussian and quickly
computable. Beneš (1981) and Daum (1984, 1986) broadened the class of
models for which the integrals in equation 1.2 are analytically tractable,
but many model specifications still fall outside this class. When the la-
tent state space is finite, the integrals in equation 1.2 become sums that
can be calculated exactly using a grid-based filter (Elliott, 1994; Arulam-
palam, Maskell, Gordon, & Clapp, 2002). For more general models, there are
many techniques for approximate Bayesian filtering see (Chen, 2003 for a
review).

In some applications, parts of the underlying model are first learned
from supervised training data consisting of (Zt, Xt ) pairs, and then the
learned model is used for filtering on new (Xt ) data. For instance, (Zt, Xt )
pairs might be used to learn p(xt |zt ) with nonparametric conditional den-
sity estimation, and then the learned p(xt |zt ), say, p̂(xt |zt ), is substituted
into whatever algorithm is used to approximate Bayes’ rule in equa-
tion 1.2b. This motivates the search for combinations of approximation
algorithms and learning methods that work well together. It also opens
the door to novel approximation algorithms that would not traditionally
be considered for a known model but become practical when the model
can be learned. For instance, from (Zt, Xt ) pairs, we can choose to learn
p(xt |zt ) or p(zt |xt ) and incorporate either into the approximation algorithm,
whereas traditional approximation algorithms assume that only p(xt |zt ) is
available.

In this letter, we explore the idea of using a novel approximation algo-
rithm that pairs well with learning and demonstrate its use in an intracorti-
cal brain-computer interface (iBCI) for a human volunteer with tetraplegia
as part of the ongoing BrainGate2 clinical trial. Our approach focuses on
the approximation of Bayes’ rule in equation 1.2b, making use of the fact
that p(xt |zt ) can be replaced with p(zt |xt )/p(zt ) throughout. (The p(xt ) term
cancels.) This strategy combines well with various gaussian assumptions
that are often employed in approximate Bayesian filtering, resulting in what
we call the discriminative Kalman filter (DKF). The DKF retains much of the
computational simplicity of the classical Kalman filter but allows for arbi-
trary observation models. Some of our clinical research using the DKF has
already been published (Brandman, Burkhart et al., 2018; Brandman, Hos-
man et al., 2018), and theoretical aspects of the DKF are further explored in
the first author’s dissertation (Burkhart, 2019).
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972 M. Burkhart et al.

2 The Discriminative Kalman Filter

In section 2.1, we derive the DKF approximation for a class of models that
generalizes the Kalman filter by allowing for arbitrary observation models.
We discuss approximation accuracy in section 2.2 and introduce a modified
algorithm that can be more robust to model misspecification in section 2.3.
In section 2.4, we compare the DKF formalism to a variety of existing ap-
proaches that generalize the Kalman filter, and in section 2.5, we discuss us-
ing the DKF approximation in models with nonlinear or nongaussian state
dynamics.

We now introduce some notation and conventions. We let the latent
states Zt take values in R

d×1 and the observations Xt take values in an ab-
stract space X . In all of our examples, X ⊆ R

n×1, but this is not necessary.
We use ηd(z;μ,�) to denote the d-dimensional multivariate gaussian distri-
bution with mean vector μ ∈ R

d×1 and covariance matrix � ∈ Sd evaluated
at z ∈ R

d×1, where Sd denotes the set of d×d positive-definite (symmetric)
matrices. We let Aᵀ refer to the transpose of a matrix A and use E and V for
expected value and variance/covariance, respectively.

2.1 Filter Derivation. For the basic derivation, we assume that the la-
tent states form a stationary, mean zero, gaussian, vector autoregressive
model of order 1. Namely, for A ∈ R

d×d and S, � ∈ Sd,

p(z0) = ηd(z0; 0, S), (2.1a)

p(zt |zt−1) = ηd(zt; Azt−1, �), (2.1b)

for t = 1, 2, . . ., where S = ASAᵀ + � so that the process is stationary. Note
that equation 2.1 matches the latent state model for the stationary Kalman
filter. (The assumption of zero mean is easily generalized, but it is usu-
ally more convenient to center the Zt process by subtracting the common
mean.)

The observation model p(xt |zt ) is assumed to not vary with t, so that the
joint (Zt, Xt ) process is stationary but otherwise arbitrary. The observation
model can be nongaussian, multimodal, or discrete, for example. For in-
stance, in neural decoding for BCI applications, the observations are often
vectors of counts of neural spiking events (binned action potentials), which
might be restricted to small integers or even be binary-valued.

The DKF is based on a gaussian approximation for p(zt |xt ), namely,

p(zt |xt ) ≈ ηd(zt; f (xt ), Q(xt )), (2.2)

where f : X → R
d and Q : X → Sd. Note that equation 2.2 is not an approx-

imation of the observation model, but rather of the conditional density of
the latent state given the observation at a single time step. In section 2.4,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/5/969/1865334/neco_a_01275.pdf by guest on 01 Septem
ber 2021



The Discriminative Kalman Filter 973

we compare this to other approaches that use gaussian approximations for
Bayesian filtering. When the dimensionality of the observation space (X ) is
large relative to the dimensionality of the state space (Rd), the Bernstein–
von Mises theorem states that f and Q exist such that this approximation
will be accurate, requiring only mild regularity conditions on the observa-
tion model p(xt |zt ) (see section 2.2 in van der Vaart, 1998). Furthermore, we
can take f and Q to be the conditional mean and covariance of Zt given Xt ,
namely,

f (x) = E(Zt |Xt = x), Q(x) = V(Zt |Xt = x), (2.3)

which is the approach taken in this letter, although other choices are cer-
tainly possible, such as f (xt )=arg maxzt p(zt |xt ) or f (xt )=arg maxzt p(xt |zt ),
the latter of which is most commonly used in statements of the Bernstein–
von mises Theorem.

To make use of equation 2.2 for approximating equation 1.2, we first
rewrite equation 1.2b in terms of p(zt |xt ) as

p(zt |x1:t ) = p(xt )
p(xt |x1:t−1)

p(zt |xt )
p(zt )

p(zt |x1:t−1),

= p(xt )
p(xt |x1:t−1)

p(zt |xt )
p(zt )

∫
p(zt |zt−1)p(zt−1|x1:t−1) dzt−1, (2.4)

where the second line follows from the Chapman–Kolmogorov equation
(see equation 1.2a). We then substitute the latent state model, equation 2.1,
and the DKF approximation, equation 2.2, into equation 2.4. We absorb
terms not depending on zt into a normalizing constant κ to obtain

p(zt |x1:t )

≈ κ (x1:t )
ηd(zt; f (xt ), Q(xt ))

ηd(zt; 0, S)

∫
ηd(zt; Azt−1, �)p(zt−1|x1:t−1) dzt−1. (2.5)

If p(zt−1|x1:t−1) is approximately gaussian, which it is for the base case of
t = 1 from equation 2.1a (defining p(z0|x1:0) = p(z0)), then all of the terms
on the right side of equation 2.5 are approximately gaussian. If these ap-
proximations are exact and the analytic expression for covariance is valid
(specifically if �t in equation 2.7 is positive definite), we find that the right
side of equation 2.5 is again gaussian, giving a gaussian approximation for
p(zt |x1:t ). We rely on the fact that dividing two gaussian pdfs yields an expo-
nentiated quadratic form that will itself be gaussian if the associated covari-
ance matrix is positive definite (and that the product of two gaussian pdfs
is gaussian, without any additional assumptions). See the proof of lemma 1
in appendix B for a full derivation and further details.
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974 M. Burkhart et al.

Let

p(zt |x1:t ) ≈ ηd(zt;μt (x1:t ), �t (x1:t )) (2.6)

be the gaussian approximation of p(zt |x1:t ) obtained from successively ap-
plying the approximation in equation 2.5. Defining μ0 = 0 and �0 = S, we
can sequentially compute μt = μt (x1:t ) ∈ R

d×1 and �t = �t (x1:t ) ∈ Sd via

νt = Aμt−1,

Mt = A�t−1Aᵀ + �,

�t = (
M−1

t + Q(xt )−1 − S−1)−1
,

μt = �t
(
M−1

t νt + Q(xt )−1 f (xt )
)
. (2.7)

The first two steps incorporate the exact state dynamics in equation 2.1b
and the final two steps incorporate the observation information using the
DKF approximation in equation 2.2. The function Q needs to be defined
so that �t exists and is a proper covariance matrix. A sufficient condition
that is easy to enforce in practice is Q(·)−1 − S−1 ∈ Sd (see section A.3 in
appendix A).

Equation 2.7 encapsulates the DKF. (For pseudocode, see algorithm 1.)
Once f (xt ) and Q(xt ) have been evaluated, there is no remaining depen-
dence on n and a single iteration of the algorithm takes O(d3) operations,
which is at least as fast as the Kalman filter (when d < n). The power of the
DKF, along with potential computational difficulties, comes from evaluat-
ing f and Q. If f is linear and Q is constant, the DKF and the Kalman filter
are equivalent (see section 4.1). More general f and Q allow the filter to
depend nonlinearly on the observations, improving performance in many
cases. If f and Q can be quickly evaluated and the dimension d of Zt is not
too large, then the DKF is fast enough for use in real-time applications, such
as the BCI decoding example below.

2.2 Approximation Accuracy. Let the observation space be X = Bn for
some set B. As n grows, the Bernstein–von Mises (BvM) theorem guaran-
tees under mild assumptions that the conditional distribution of Zt |Xt is
asymptotically normal in total variation distance and concentrates at Zt

(van der Vaart, 1998). This asymptotic normality result provides the main
rationale for our key approximation expressed in equation 2.2. The BvM
theorem is usually stated in the context of Bayesian estimation. To apply it
in our context, we equate Zt with the parameter and Xt with the data, so
that p(zt |xt ) becomes the posterior distribution of the parameter at a fixed
time t. We then let the dimension n of xt grow, meaning that we are observ-
ing growing amounts of data at a fixed time t associated with the param-
eter Zt . Very loosely speaking, the BvM theorem tends to be applicable in
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The Discriminative Kalman Filter 975

situations where Xt uniquely determines Zt in the limit as n → ∞ but does
not uniquely determine Zt for any finite n.

One concern is that equation 2.4 will amplify approximation errors.
Along these lines, we prove the following result that holds whenever the
BvM theorem is applicable for equation 2.2:

Theorem 1. Under mild assumptions, the total variation distance between our ap-
proximation ηd(zt;μt (x1:t ), �t (x1:t )) and the exact filtering distribution p(zt |x1:t )
converges in probability to zero for each t as n → ∞.

This result is stated formally and proven in appendix B. We interpret the
theorem to mean that under most conditions, as the dimensionality of the
observations increases, the approximation error of the DKF tends to zero.

The proof is elementary but involves several subtleties that arise be-
cause of the p(zt ) term in the denominator of equation 2.4 corresponding
to ηd(zt; 0, S). This term can amplify approximation errors in the tails of
p(zt |xt ), which are not uniformly controlled by the asymptotic normality
results in the BvM theorem. To remedy this, our proof also uses the concen-
tration results in the BvM theorem to control pathological behaviors in the
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976 M. Burkhart et al.

tails. As an intermediate step, we prove that theorem 1 still holds when the
p(zt ) term is omitted from the denominator of equation 2.4 (see remark 3 in
appendix B).

2.3 Robust DKF. Omitting the p(zt ) from the denominator of equa-
tion 2.4 is also helpful for making the DKF robust to violations of the mod-
eling assumptions and errors introduced when f and Q are learned from
training data. Repeating the original derivation, but without ηd(zt; 0, S) in
the denominator, gives the following filtering algorithm that we call the ro-
bust DKF. One can think of the robust DKF as a special case of the standard
DKF where all eigenvalues of S−1 are so small that the effect of subtract-
ing S−1 is negligible. This has the effect of placing an improper prior on
Z0. Defining μ1(x1) = f (x1) and �1(x1) = Q(x1), we sequentially compute
μt and �t for t ≥ 2 via

νt = Aμt−1,

Mt = A�t−1Aᵀ + �,

�t = (
M−1

t + Q(xt )−1)−1
,

μt = �t
(
M−1

t νt + Q(xt )−1 f (xt )
)
. (2.8)

(Note that we initialize at t = 1 and not t = 0 in the robust DKF.) Justifica-
tion for the robust DKF comes from remark 3 in appendix B showing that
the robust DKF accurately approximates the true p(zt |x1:t ) in total variation
distance for each t as n increases. We sometimes find that the robust DKF
outperforms the DKF on real-data examples, but not on simulated examples
that closely match the DKF assumptions. (For pseudocode, see algorithm 2.)

2.4 Other Gaussian Approximations. The DKF enforces a gaussian
form for the filtering distribution p(zt |x1:t ), a common strategy for approxi-
mate Bayesian filtering owing to the analytic and representational tractabil-
ity of gaussians. In this section, we describe several other methods that use
gaussian approximations, focusing on the case of linear, gaussian state dy-
namics. For this type of state dynamics, the transition from time t − 1 to
time t is usually separated into two distinct steps when using gaussian ap-
proximations. Beginning with

p(zt−1|x1:t−1) ≈ ηd(zt−1;μt−1, �t−1),

the first step uses the exact state dynamics, equation 2.1b, to create a gaus-
sian approximation for p(zt |x1:t−1), namely,

p(zt |x1:t−1) ≈ ηd(zt; νt, Mt ), (2.9)
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The Discriminative Kalman Filter 977

where νt = Aμt−1 and Mt = A�t−1Aᵀ + �, as in equations 2.7 and 2.8. Most
gaussian methods would proceed similarly for the first step under these
state dynamics. Differences between methods appear for nonlinear or non-
gaussian state dynamics (see section 2.5).

The second step attempts to incorporate the observation information xt

via Bayes’ rule:

p(zt |x1:t ) = p(xt |zt )p(zt |x1:t−1)∫
p(xt |zt )p(zt |x1:t−1) dzt

.

Beginning with the gaussian approximation from step 1 (equation 2.9) and
enforcing the final approximation,

p(zt |x1:t ) ≈ ηd(zt;μt, �t ),

the problem reduces to finding μt and �t so that

ηd(zt;μt, �t ) ≈ p(xt |zt )ηd(zt; νt, Mt )∫
p(xt |zt )ηd(zt; νt, Mt ) dzt

= qt (zt ), (2.10)

where qt is defined by this equation.
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978 M. Burkhart et al.

There are many strategies in the literature for choosing μt and �t in equa-
tion 2.10. The terminology is not standardized, but we will attempt to de-
scribe some prominent classes of strategies.

2.4.1 Gaussian Assumed Density Filter. The gaussian assumed density fil-
ter (G-ADF) usually refers to choosing μt and �t to be the mean vector and
covariance matrix of the density qt in equation 2.10 (Kushner, 1967; Ito, 2000;
Ito & Xiong, 2000; Minka, 2001a). Moment matching, in this case, minimizes
the relative entropy D(qt‖ηd(·;μt, �t )). The G-ADF directly seeks a gaus-
sian approximation to the full posterior p(zt |x1:t ), whereas the DKF derives
a gaussian approximation to the full posterior from a gaussian approxima-
tion of p(zt |xt ). While the G-ADF approach tends to prove quite accurate,
it is practical only if the mean and covariance of qt are available. In par-
ticular, we must be able to efficiently compute or easily approximate the
integrals,

a =
∫

p(xt |zt )ηd(zt; νt, Mt ) dzt,

b =
∫

zt p(xt |zt )ηd(zt; νt, Mt ) dzt,

c =
∫

ztz
ᵀ
t p(xt |zt )ηd(zt; νt, Mt ) dzt, (2.11)

to obtain μt = b/a and �t = c/a − μtμ
ᵀ
t . There also exist extensions of the

G-ADF. For instance, expectation propagation uses iterative refinement of
estimates to improve on assumed density filtering (Minka, 2001a, 2001b). It
may be possible to similarly improve the DKF, but iterating over the history
of observations is typically not practical in an online setting, and we do not
explore that approach here.

In cases where the DKF is derived from a known model, as opposed
to being learned from training data, computing f (xt ) and Q(xt ) requires
the computation of very similar integrals to those needed for the G-ADF,
the difference being that vt and Mt are replaced by 0 and S, respec-
tively, throughout equation 2.11 (and then f (xt ) = b/a and Q(xt ) = c/a −
f (xt ) f (xt )ᵀ). For this reason, in models where the G-ADF can be easily used,
there would seem to be no reason to use the DKF. The main difference is that
the DKF can be easily learned from training data, whereas the G-ADF can-
not, since the latter is based on the conditional mean and variance of Zt |Xt

derived under a different marginal distribution for Zt at each time step,
namely, ηd(zt; νt, Mt ). The example in section 4.2 illustrates a model where
both the DKF and G-ADF can be analytically computed; there is little dif-
ference in performance. The example in section 4.3 illustrates a somewhat
contrived model where the DKF can be easily computed, but it seems the
G-ADF cannot.
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The Discriminative Kalman Filter 979

2.4.2 Laplace Approximation. The Laplace approximation uses a Taylor
approximation at the maximum to coerce the numerator in equation 2.10
into a gaussian form as a function of zt (Butler, 2007; Koyama, Pérez-Bolde,
Shalizi, & Kass, 2010; Quang, Musso, & Le Gland, 2015). Defining

gt (zt ) = log
(
p(xt |zt )ηd(zt; νt, Mt )

)
and z∗

t = arg maxzt
gt (zt ),

a second-order Taylor approximation of gt at z∗
t is

gt (zt ) ≈ gt (z∗
t ) + ġt (z∗

t )(zt − z∗
t ) + (zt − z∗

t )ᵀg̈t (z∗
t )(zt − z∗

t )/2,

where ġt (z) and g̈t (z) denote, respectively, the d×1 gradient vector and the
d×d Hessian matrix of gt evaluated at z. The second term vanishes since ġt

is zero at the maximum, giving

qt (zt ) ∝ exp(gt (zt ))

≈ exp
(
gt (z∗

t ) + (zt − z∗
t )ᵀg̈t (z∗

t )(zt − z∗
t )/2)

)
∝ ηd(zt; z∗

t ,−g̈t (z∗
t )−1).

This motivates the choice of μt = z∗
t and �t = −g̈t (z∗

t ). Similar to the DKF,
the Laplace approximation can be justified in the limit of increasing obser-
vation dimensionality using the BvM theorem. If z∗

t or the derivatives of
gt are not available in closed form, then the Laplace approximation can be
slow owing to the need to solve an optimization problem at each time step.
Laplace approximations are also criticized for being too local, in that the
local curvature in the density at z∗

t dictates the variance chosen for a global
approximation to the density.

2.4.3 Linearization Methods. Several methods, often called linearization
methods, can be motivated by attempting to approximate the numerator of
equation 2.10 as jointly gaussian in (zt, xt ), namely,

p(xt |zt ) ηd(zt; νt, Mt ) ≈ ηd+n

(( zt

xt

)∣∣∣( νt

ht

)
,
( Mt Ct

Cᵀ
t Nt

))
, (2.12)

where the history of observations x1:t is allowed to influence the choice of
ht ∈ R

n×1, Nt ∈ Sn, and Ct ∈ R
d×n. Using this approximation allows equa-

tion 2.10 to be exactly integrated to obtain

μt = νt + CtN−1
t (xt − ht ) and �t = Mt − CtN−1

t Cᵀ
t . (2.13)

Methods differ in how they choose ht , Nt , and Ct .
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980 M. Burkhart et al.

Using ηd(zt; νt, Mt ) as the marginal density for Zt , equation 2.12 can be
rewritten as

p(xt |zt ) ≈ ηn(xt; bt + Htzt,�t ). (2.14)

The implicit linearization in equation 2.12 is now explicit: E(Xt |Zt = zt ) is
approximated as the linear function bt + Htzt . The relationship between the
different parameters in equations 2.12 and 2.14 is bt = ht − Cᵀ

t M−1
t vt , Ht =

Cᵀ
t M−1

t , and �t = Nt − Cᵀ
t M−1Ct . Upon reparameterization,1 equation 2.13

can be used for filtering with

�t = (M−1
t + Hᵀ

t �−1
t Ht )−1,

μt = �t
(
M−1

t νt + Hᵀ
t �−1

t (xt − bt )
)
,

which has a similar appearance to the corresponding DKF updates in equa-
tion 2.7.

Equation 2.14 underlies several gaussian approximations to Bayes’ rule,
including the approximations used in the extended Kalman filter (EKF),
the unscented Kalman filter (UKF: Julier & Uhlmann, 1997; Wan & van der
Merwe, 2000; van der Merwe, 2004), and the statistically linearized filter
(SLF: Gelb, 1974; Särkkä, 2013). The EKF, for instance, begins with the func-
tions

h(z) = E(Xt |Zt = z) and �(z) = V(Xt |Zt = z),

which are assumed known, and takes Ht = ḣ(νt ), bt = h(νt ) − Htνt , and �t =
�(νt ), where ḣ(z) is the n×d matrix of partial derivatives of h evaluated at z.
These choices of bt and Ht correspond to a first-order Taylor approximation
of h at the point νt . Like the Laplace approximation, the EKF is often criti-
cized for being too local because the gradient of h at a single point drives
the approximation.

The unscented Kalman filter (UKF) employs the eponymous transform
to propagate weighted, deterministically chosen points through a nonlin-
ear transformation and recover estimates for ht , Nt , and Ct from equa-
tion 2.13. The estimates for all three parameters prove exact for linear
transformations of gaussians but inexact for general higher-order polyno-
mials (Särkkä, 2013), so we consider this a linearization method. Variations
on this approach, collectively called sigma-point filters (van der Merwe,
2004), include the central difference Kalman filter (CDKF: Ito & Xiong,
2000; Nørgaard, Poulsen, & Ravn, 2000), the Gauss-Hermite Kalman filter,

1
With ht = bt + Htνt , Ct = MtH

ᵀ
t , and Nt = �t + HtMtH

ᵀ
t .
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the quadrature Kalman filter (Ito, 2000; Ito & Xiong, 2000), and the cuba-
ture Kalman filter (Arasaratnam, Haykin, & Elliott, 2007; Arasaratnam &
Haykin, 2009).

The SLF is a related but more global approximation for the same ob-
servation model. It selects bt and Ht to minimize the difference between
the true observation model Xt = h(Zt ) + εt and the linear approximation
Xt ≈ at + BtZt + εt , where Zt is chosen from the current, approximate, pre-
dicted distribution. For instance, at and Bt can be chosen to minimize

∫
‖h(zt ) − (at + Btzt )‖2ηd(zt; νt, Mt ) dzt,

where ‖ · ‖ is the usual Euclidean norm in R
n. Defining h̄t = ∫

h(zt )ηd(zt;
νt, Mt ) dzt and H̄t = ∫

(h(zt ) − h̄t )(zt − νt )ᵀηd(zt; νt, Mt ) dzt , the solution is
Bt = H̄tM−1

t and at = h̄t − Btνt , again with �t = �. Like the EKF, this ver-
sion of the SLF is best suited for additive, gaussian noise models, but it
further requires that the integrals defining h̄t and H̄t can be efficiently com-
puted or easily approximated.

The UKF, the SLF, and many related techniques improve on some of the
deficiencies of the EKF. Nevertheless, these methods tend to perform poorly
when the conditional distribution of Xt given Zt cannot be well approxi-
mated as gaussian. The examples in sections 4.2 and 4.3 illustrate models
where linearization proves completely ineffectual, as h(z) = E(Xt |Zt = z) =
0 for all z in these examples, even though the G-ADF and the DKF work
well.

2.5 Nonlinear State Dynamics. Filtering can be conceptually separated
into two steps. The first step uses the state dynamics to transition from
Zt−1|X1:t−1 to Zt |X1:t−1 via equation 1.2a, and the second step uses Bayes’
rule to update Zt |X1:t−1 into Zt |X1:t via equation 1.2b. In this letter, diffi-
culties with the first step are removed by assuming linear, gaussian, state
dynamics (see equation 2.1). There are, however, a variety of approximation
methods for more complicated state dynamics, including methods that ap-
proximate p(zt |x1:t−1) as a gaussian. Any such gaussian method could be
easily combined with the DKF approximation, which relates to Bayes’ rule
in the second step. In particular, given the approximation

p(zt |x1:t−1) ≈ ηd(zt; νt, Mt ),

we simply use these values of νt and Mt in the DKF algorithm (see equa-
tion 2.7) or the robust DKF algorithm see equation 2.8, instead of computing
them in the first two lines of these algorithms. In this letter, we do not ex-
plore in depth this generalization to nonlinear state dynamics, although we
do provide a proof of concept example in section 4.4.
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There is a vast literature on more general approximation algorithms
for Bayesian filtering (Särkkä, 2013; Chen, 2003). Monte Carlo integration
(Metropolis & Ulam, 1949) can almost always be used. Such approaches are
called sequential Monte Carlo or particle filtering and include sequential
importance sampling and sequential importance resampling (Handschin &
Mayne, 1969; Handschin, 1970; Gordon, Salmond, & Smith, 1993; Kitagawa,
1996; del Moral, 1996; Doucet, Godsill, & Andrieu, 2000; Cappé, Moulines,
& Ryden, 2005; Cappé, Godsill, & Moulines, 2007). These methods apply to
all classes of models but tend to be the most expensive to compute online
and suffer from the curse of dimensionality (Daum & Huang, 2003). Alter-
nate sampling strategies (see, e.g., Chen, 2003; Liu, 2008) can be used to
improve filter performance, including acceptance-rejection sampling
(Handschin & Mayne, 1969), stratified sampling (Douc & Cappé, 2005),
hybrid MC (Choo & Fleet, 2001), and quasi-MC (Gerber & Chopin, 2015).
There are also ensemble versions of the Kalman filter that are used to prop-
agate the covariance matrix in high dimensions, including the ensemble
Kalman filter (enKF: Evensen, 1994) and the ensemble transform Kalman
filter (ETKF: Bishop, Etherton, & Majumdar, 2001; Majumdar, Bishop, Ether-
ton, & Toth, 2002), along with versions that produce local, parallelizable ap-
proximations for covariance (Ott et al., 2004; Hunt, Kostelich, & Szunyogh,
2007).

It may be possible to usefully combine the DKF approximation with
some of these more advanced filtering techniques. The key approximation
in the DKF is

p(xt |zt ) = p(xt )
p(zt |xt )

p(zt )
≈ κ (xt )

ηd(zt; f (xt ), Q(xt ))
ηd(zt; 0, S)

. (2.15)

This approximation could, in principle, be substituted for the likelihood
p(xt |zt ) in any filtering algorithm, including particle filters, which incor-
porate the likelihood into the particle weights. The normalizing term κ (xt )
from equation 2.15 will generally cancel, since the final posterior distribu-
tion p(zt |x1:t ) is invariant to terms depending only on x1:t . The advantage of
equation 2.15 is that f (·), Q(·), and S might be easier to learn from data than
the full conditional density p(xt |zt ). For complex state dynamics, it is worth
noting that the denominator ηd(zt; 0, S) will no longer precisely correspond
to p(zt ) but will also be an approximation. If the gaussian approximations
for p(zt |xt ) and p(zt ) are learned separately, some care may need to be taken
to ensure the resulting approximation to p(xt |zt ) remains a good one. One
strategy might be to learn a gaussian-shaped approximation to the den-
sity ratio p(zt |xt )/p(zt ) as a function of zt (Sugiyama, Suzuki, & Kanamori,
2012). Another strategy might be to use the robust DKF approximation as
in section 2.3, which simply drops the denominator in equation 2.15. In fu-
ture work, we plan to explore these and other approaches that might allow
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a DKF-style approximation to be incorporated into more general filtering
models.

3 Learning the DKF

The parameters in the DKF are A, �, f (·), and Q(·). (S is specified from A and
� using the stationarity assumption.) In many problems, some or all of these
parameters might be unknown or not easily computable. In this section, we
discuss some strategies for learning or approximating the parameters in the
situation where fully supervised training data are available, meaning that
we have a sequence of (Zt, Xt ) pairs assumed to be sampled from the under-
lying Bayesian network in equation 1.1 and denoted (z′

1, x′
1), . . . , (z′

m, x′
m).

This training data might be real data or might be simulated from a known
generative model for which the parameters, particularly f and Q, are not
easily computable.

We use Â, �̂, f̂ , and Q̂ to denote the respective learned parameters. We
consider only the situation where the parameters are learned from training
data and then fixed for subsequent filtering on a different sequence of obser-
vations. In particular, for filtering, we simply replace each parameter with
its corresponding estimate in the DKF algorithm in equation 2.7. We do not
consider a more fully Bayesian approach, where parameter uncertainty is
propagated through the filtering equations.

A and � are the parameters of a well-specified statistical model given by
equations 2.1a and 2.1b. In the learning experiments below, we learn them
from (z′

t−1, z′
t ) pairs using only equation 2.1b, which reduces to multiple

linear regression and is a common approach when learning the parameters
of a Kalman filter from fully observed training data (see, e.g., Wu et al.,
2002).

The parameters f and Q are more unusual, since they are not uniquely
defined by the model, but are introduced via a gaussian approximation in
equation 2.2. One possibility, and the one we focus on here, is to define f
and Q via equation 2.3 and then learn them directly from training data as

f̂ (x) ≈ f (x) = E(Zt |Xt = x) and Q̂(x) ≈ Q(x) = V(Zt |Xt = x).

(3.1)

Using equation 3.1, we learn f and Q from (z′
t, x′

t ) pairs ignoring the over-
all temporal structure of the data, which reduces to a standard nonlinear
regression problem with heteroskedastic variance. The conditional mean f
can be learned using any number of off-the-shelf regression tools, and then
Q can be learned from the residuals, ideally using a held-out portion of the
training data. We think that the ability to easily incorporate off-the-shelf
discriminative learning tools into a closed-form filtering equation is one of
the most exciting and useful aspects of this approach.
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In the experiments that follow, we compare three standard nonlinear re-
gression methods for learning f : Nadaraya-Watson (NW) kernel regression,
neural network (NN) regression, and gaussian process (GP) regression. (De-
tails are in sections A.4 to A.6.) While we have found that these methods
work well with the DKF framework, one could readily use any arbitrary
regression model.

For learning Q, we first define Rt = Zt − f (Xt ) and R̂t = Zt − f̂ (Xt ), so
that

Q(x) = V(Zt |Xt = x) = E(RtR
ᵀ
t |Xt = x) ≈ E(R̂tR̂

ᵀ
t |Xt = x). (3.2)

The final expression in equation 3.2 is a conditional expectation and can in
principle be learned with regression on (R̂tR̂

ᵀ
t , Xt ) pairs. Learning Q in this

way using off-the-shelf regression tools is more challenging because of the
additional requirement that Q(x) be a valid covariance matrix. Since R̂tR̂

ᵀ
t

is positive semidefinite, any regression estimator that is a weighted aver-
age of the training data with only nonnegative weights will also be positive
semidefinite and, in most cases, positive definite. NW kernel regression con-
stitutes one such method, and we use it for learning Q in all of our examples.
Given a subset of the training set {(z′′

i , x′′
i )}k

i=1, distinct from the subset used
to learn the function f , we define the residuals r̂i = z′′

i − f̂ (x′′
i ), and then

learn Q using NW kernel regression via

Q̂(x) =
∑k

i=1 r̂ir̂
ᵀ
i κ (x, x′′

i )∑k
i=1 κ (x, x′′

i )
, (3.3)

for a kernel κ : X × X → [0,∞). (Complete details are in section A.4.)

4 Examples

In this section, we compare filter performance on both artificial models
and real neural data. Corresponding Matlab code, and Python code for
the long short-term memory (LSTM) comparison, is freely available online
at https://github.com/burkh4rt/Discriminative-Kalman-Filter under the
GNU General Public License v3.0 to encourage code use and adaptation.
For timing comparisons, the code was run on a Mid-2018 MacBook Pro lap-
top with a 2.6 GHz Intel Core i7 processor using Matlab v. 2019a and Python
v. 3.6.8.

4.1 Kalman Observation Model. The stationary Kalman filter observa-
tion model is

p(xt |zt ) = ηn(xt; b + Hzt,�)
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for observations in X = R
n×1 and for fixed b ∈ R

n×1, H ∈ R
n×d, and � ∈ Sn.

Defining f and Q via equation 2.3 gives

Q(x) ≡ Q = (S−1 + H��−1H)−1 and f (x) = QH��−1(x − b).

It is straightforward to verify that the DKF in equation 2.7 is exactly the
well-known Kalman filter recursion. Hence, the DKF computes the exact
posterior p(zt |x1:t ) in this special case.

4.2 Kalman Observation Mixtures. This example and the next are de-
signed to illustrate how the gaussian approximation underlying the DKF
is more similar in spirit to the G-ADF than to linearization approximations
such as the Kalman filter, the EKF, and the UKF (see section 2.4). In par-
ticular, the specific observation model used in the simulation is engineered
so that the state Zt and the observation Xt are uncorrelated (but not inde-
pendent). Linearization methods are useless in this case, whereas the DKF
is able to take advantage of the higher-order dependence, much like the
G-ADF.

The observation model is a probabilistic mixture of Kalman observation
models (see section 4.1), namely,

p(xt |zt ) =
L∑

	=1

π	ηn(xt; b	 + H	zt,�	),

for a probability vector π = π1:L, where each b	 ∈ R
n×1, H	 ∈ R

n×d, and
�	 ∈ Sn. At each time step, one of L possible Kalman observation models
is randomly and independently selected according to π and then used to
generate the observation. This model can be viewed as a special case of a
switching state-space model with independent switching (see Shumway &
Stoffer, 1991; Ghahramani & Hinton, 2000). The integrals in equation 2.11
can be efficiently computed for any choice of νt and Mt , including νt = 0 and
Mt = S, so the G-ADF and the DKF can be computed exactly for this model
(see section A.1 for details), although the DKF is much faster for large n, be-
cause it allows for more precomputation. Figure 1 illustrates that the DKF
is comparable to the G-ADF in terms of root mean squared error (RMSE)
for a particular instance of this model, and it also shows that the computa-
tional savings of the DKF over a particle filter with similar accuracy can be
dramatic, especially as n gets large.

Define b̄ = ∑
	 π	b	 and H̄ = ∑

	 π	H	 so that

E(Xt |Zt ) = b̄ + H̄Zt . (4.1)
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Figure 1: Kalman observation mixtures. This figure shows filtering perfor-
mance on an instance of the model in section 4.2 for various approximation
algorithms as the observation dimension n increases. The hidden state dimen-
sion is d = 10, and the state model parameters are S = Id, A = 0.95Id − 0.05, and
� = S − ASAᵀ. The number of categories is L = 2, the category probabilities are
π = (0.5, 0.5), and the Kalman parameters are b1 = b2 = b̄ = 0, �1 = In, �2 =
5In, and H2 = −H1, so that H̄ = 0 (see equation 4.1). The entries of H1 were gener-
ated as independent N(0, d−1) using the Matlab 9.6 code rng(42,‘twister’);

H = randn(1000,10)/sqrt(10). The data were generated for an observation
dimension of 1000, and the plot shows filter performance using only the first n
dimensions of Xt for selected n between 1 and 1000. Filter performance was
measured using RMSE (left panel) and computation time (s, right panel) on
a single test sequence of length T = 104. Because Xt and Zt are uncorrelated,
linearization methods (e.g., KF, EKF, and UKF) ignore Xt and always predict
Zt ≈ E(Zt ) = 0, giving an RMSE of approximately 1 (black line) in this case. The
accuracy of particle filtering increases with the number of particles at the ex-
pense of increased computation, and we show performance for different num-
bers of particles: 101, 102, 103, 104, 105 (blue lines, ordered as expected). We also
show RMSE for the optimal prediction using only Xt (as opposed to the en-
tire history X1:t), namely, Zt ≈ E(Zt |Xt ) = f (Xt ) (dotted red line). (This serves to
demonstrate the performance gain that filtering provides.) Finally, we caution
that the model parameters have much more influence on the relative perfor-
mance of the different gaussian approximation methods when n is small than
when n is large. The parameters in this model were chosen so that the DKF also
performs well for small n, even though we only have guarantees about its per-
formance in the large n setting.
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An interesting special case of this model is when H̄ = 0, so that the mean of
Xt given Zt does not depend on Zt , and, consequently, Xt and Zt are uncor-
related. Information about the states is found only in higher-order moments
of the observations. Algorithms that are designed around E(Xt |Zt ), such as
the Kalman filter, EKF, and UKF, are not useful when H̄ = 0, illustrating
the important difference between a gaussian approximation for the obser-
vation model and the DKF approximation in equation 2.2. The simulation
in Figure 1 used H̄ = 0, and the ineffectiveness of linearization techniques
is easily seen.

4.3 Independent Bernoulli Mixtures. Here we describe a model where
observations take values in {0, 1}n to further emphasize that our gaussian
approximation is in the state space, not in the observation space. Like the
example in section 4.2, this example is also engineered so that the states and
observations are uncorrelated, rendering linearization-based methods inef-
fective (see section 2.4). Finally, the specific parameters of this example are
chosen to have the peculiar property that the DKF is efficiently computable,
whereas the G-ADF is not (insofar as we can tell).

The observation model is a probabilistic mixture of conditionally inde-
pendent Bernoulli random variables, namely,

p(xt |zt ) =
L∑

	=1

π	

n∏
i=1

g	i(zt )xti (1 − g	i(zt ))1−xti ,

for a probability vector π = π1:L. For each 	 = 1, . . . , L and i = 1, . . . , n, the
functions g	i : Rd×1 → (0, 1) are defined by

g	i(zt ) = α	i1{ztdi < γi} + β	i1{ztdi ≥ γi},

where each γi ∈ R, α	i, β	i ∈ (0, 1), di ∈ {1, . . . , d}, and where ztk indicates the
kth coordinate of zt . The ith coordinate of Xt depends on Zt only through
the dith coordinate of Zt , and the probability distribution of Xti is different
depending on whether Ztdi < γi. Each of the L components of the mixture
changes the probability distribution of Xti, via α	i and β	i, but it does not
change the corresponding coordinate di or the change point γi.

For the state dynamics, we use S = Id, which makes it possible to com-
pute f (zt ) and Q(zt ) exactly (see section A.2). In general, however, the in-
tegrals in equation 2.11 are not easily evaluated, so the G-ADF is not a
practical approximation technique in this example. Figure 2 suggests that
the DKF approximation performs well for a particular instance of this
model, in the sense that the DKF’s RMSE is near or better than that of a
particle filter with a large number of particles. The figure also shows that
the computational savings over a particle filter with similar accuracy can be
dramatic, especially as n gets large.
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Figure 2: Independent Bernoulli mixtures. This figure shows filtering perfor-
mance on an instance of the model in section 4.3 for various approximation al-
gorithms as the observation dimension n increases. The state model (Zt ) and the
figure conventions (and cautions) are the same as those described in the Figure
1 caption. (Using this many particles with higher n was too time-consuming.)
The number of categories is L = 2, the category probabilities are π = (0.5, 0.5),
and for each i, α1i = β2i = 0.01 and α2i = β1i = 0.99, so that each ḡi ≡ 0.5 (see
equation 4.2). The d1:n were chosen as independent uniform{1, . . . , d}, and the
γ1:n were chosen as independent N(0, 1).

Define ḡi = ∑
	 π	g	i, so that

E(Xti|Zt ) = P(Xti = 1|Zt ) = ḡi(Zt ). (4.2)

An interesting special case of this model is when ḡi is constant for each i, so
that the mean of Xt given Zt does not depend on Zt , and, consequently, Xt

and Zt are uncorrelated. As in the previous section, linearization approxi-
mations like the Kalman filter, EKF, and UKF are not useful when ḡi is con-
stant. Furthermore, when ḡi is constant, Xti and Zt are independent, that
is, individual coordinates of the observations carry no information about
the states. Only the vector of observations Xt can be used for meaningful
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predictions of Zt . The simulation in Figure 2 used ḡi ≡ 0.5 for all i, so that
each coordinate of the observations is independent of the state.

4.4 Kalman Observation Mixtures with Nonlinear State Dynamics.
This example illustrates how the DKF approximation can be combined
with other filtering approximations for use with nonlinear state dynam-
ics (see section 2.5). We include it here as a proof of concept and leave
for future work a more thorough exploration of when the DKF approx-
imation is useful for filtering with nonlinear state dynamics. We use the
same mixture of Kalman observation models from section 4.2 but modify
the state dynamics in equation 2.1 as follows. Define the 2×2 rotation matrix
R(θ ) = ( sin θ

− cos θ

cos θ

sin θ

)
, and for even d, define the d×d rotation matrix Rd(θ ) to

be the block-diagonal matrix with R(θ ) repeated along the diagonal:

Rd(θ ) =

⎛
⎜⎜⎜⎝

R(θ ) 0 · · · 0
0 R(θ ) · · · 0
...

...
. . .

...
0 0 · · · R(θ )

⎞
⎟⎟⎟⎠.

Define the function a : Rd×1 → R
d×1 via a(z) = ARd(|z|)z, where | · | denotes

the Euclidean norm. The new state dynamics are

p(z0) = ηd(z0; 0, S),

p(zt |zt−1) = ηd(zt; a(zt−1), �),

for t = 1, 2, . . ., where S = ASAᵀ + �. These are the same dynamics as be-
fore except that the conditional mean of Zt given Zt−1 has changed from the
linear function AZt−1 to the nonlinear function a(Zt−1). In particular, before
being multiplied by A, the state vector is rotated by an amount that depends
on its length. This type of nonlinearity was chosen because when S = Id (as
in our examples), Zt remains marginally gaussian, an important part of the
DKF approximation.

We use an unscented Kalman filter (UKF) approximation for the state dy-
namics; that is, we replaced νt and Mt in equations 2.7 and 2.8 with the mean
and covariance obtained from performing the unscented transform (Julier
& Uhlmann, 1997). We used Matlab’s unscentedKalmanFilter implementa-
tion with alpha=1,beta=kappa=0. The UKF approximations of νt and Mt

can also be substituted directly into the G-ADF used in section 4.2.
Figure 3 shows filtering performance for a specific instance of this model

and illustrates that at least in this case, a DKF approximation for nonlin-
ear, nongaussian observation models can be usefully combined with other
approximations for nonlinear state dynamics and that there is little loss of
performance compared to the G-ADF.
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Figure 3: Nonlinear state dynamics. This figure shows filtering performance on
an instance of the model in section 4.4 for various approximation algorithms as
the observation dimension n increases. The observation model (Xt |Zt ) and the
figure conventions (and cautions) are the same as those described in the Figure
1 caption. The state model is now nonlinear, and μt and Mt in the DKF, robust
DKF, and G-ADF are approximated using a UKF.

4.5 Unknown Observation Model: Macaque Reaching-Task Data.
This example illustrates Bayesian filtering in a case where the observation
model is unknown and must be learned from data. Flint, Lindberg, Jordan,
Miller, and Slutzky (2012) implanted a rhesus monkey with a 96-channel
microelectrode array (Blackrock Microsystems LLC) over the arm area of
its primary motor cortex (M1). The monkey was trained to move a manipu-
landum to acquire illuminated targets for a juice reward. While performing
this task, the monkey’s neural spikes were recorded with a 128-channel ac-
quisition system (Cerebus, Blackrock Microsystems LLC). The signal was
sampled at 30 kHz, high-pass-filtered at 300 Hz, and then thresholded and
manually sorted into spikes offline. Walker and Kording (2013) continue
to make these data publicly available as part of the Database for Reaching
Experiments and Models (DREAM). We used data from Flint et al. (2012)
and aggregated spike counts over 100 ms bins. The first n = 10 principal
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Table 1: Normalized RMSE (nRMSE) for Various Filtering Methods on the Flint
Data Set.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Average

Kalman 0.765 0.942 0.788 0.793 0.780 0.765 0.805

DKF-NW −21% −18% −17% −23% −20% −23% −20%
DKF-GP −21% −19% −15% −20% −18% −20% −19%
DKF-NN −19% −15% −13% −13% −13% −17% −15%
LSTM −15% −19% −16% −13% −16% −11% −15%
EKF 2% 24% 12% 18% 12% 3% 12%
UKF 2% 31% 18% 18% 15% 6% 15%

Notes: The nRMSE is computed by dividing the RMSE by the root mean square
of the observation vector, so that predicting identically zero would yield an
nRMSE of 1. The top row shows the nRMSE of the Kalman filter. Each remain-
ing row shows the percentage change in nRMSE relative to the Kalman filter,
with methods ordered from best (top) to worst (bottom) average performance.
Columns 1 to 6 refer to completely separate trials using new training and testing
data. The final column gives the average performance across the six trials.

Table 2: Mean Absolute Angular Error (Radians) for Various Filtering Methods
on the Flint Data Set.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Average

Kalman 0.889 0.955 1.025 0.933 0.964 0.926 0.949

DKF-NW −15% −1% −20% −17% −25% −28% −18%
DKF-GP −11% 7% −22% −16% −24% −25% −15%
DKF-NN −7% −2% −17% −16% −21% −23% −14%
LSTM −2% −2% −12% −6% −10% −8% −7%
UKF 0% 3% −3% −3% −8% −6% −3%
EKF 4% 3% −2% −4% −8% −7% −2%

Notes: Because cursor speed is often adjustable in BCIs (Willett et al., 2019), this
may provide a more informative measure of performance. See the caption for
Table 1 for more details about the table arrangement. Note that 45◦ = π/4 ≈ 0.79
radians, so all of these methods have fairly substantial angular error over 100 ms
prediction intervals. Chance performance would be π/2 ≈ 1.57 radians.

component analysis (PCA) components of neural data became the observed
variable Xt , and we used the d = 2-dimensional (horizontal and vertical)
cursor velocity (lagged 50 ms after the end of the spike count bin) as the
latent variable Zt .

Tables 1 and 2 compare filtering performance using various learning
algorithms and filtering methods. For learning the function f : R10 → R

2

for the DKF, we experimented with Nadaraya-Watson (NW) kernel regres-
sion, neural network (NN) regression, and gaussian process (GP) regres-
sion. In each case, we learned the function Q : R10 → S2 using NW kernel
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regression from the approximate residuals as in equation 3.3. For the
Kalman filter, parameters are learned in the usual manner via multivari-
ate (linear) regression. For the EKF and UKF (see section 2.4), we learned
the conditional mean h : R2 → R

10 defined by

h(z) = E(Xt |Zt = z) (4.3)

via neural network regression and took the conditional covariance to be
constant, namely, �(z) = V(Xt |Zt = z) ≡ � ∈ S10, which we learned from
the approximate residuals. Finally, we also experimented with an LSTM
recurrent neural network for predicting Zt given X1:t . In all cases, we used
5000 training points and a different 1000 testing points. (More details about
all of these methods are in sections A.4 to A.7.)

The DKF using NW kernel regression was the best method among the
ones that we tried, and all versions of the DKF were near the top in perfor-
mance. Under the mean absolute angular error (MAAE) metric (Simeral,
Kim, Black, Donoghue, & Hochberg, 2011), each version of the DKF out-
performed prediction using the corresponding f̂ , illustrating the benefit of
filtering to combine information from both past and present observations.
The EKF and UKF performed poorly. We do not know the degree to which
poor performance is a result of errors introduced by the EKF and UKF ap-
proximations or a result of errors introduced from learning the function
h in equation 4.3. All versions of the DKF outperformed the LSTM that
we used. The LSTM and its variants require manually selecting a neural
network architecture and several tuning parameters. This is often done by
experts through trial and error. While we suspect that there is some combi-
nation of architecture and tuning parameters that would allow the LSTM to
meet or exceed the DKF performance, automating this process of searching
through network architecture remains an area of active research requiring
extensive computational resources (Zoph & Le, 2017; Real et al., 2017).

4.6 Closed-Loop Decoding in a Person with Paralysis. Neural de-
coding for closed-loop brain-computer interfaces (BCIs) provided the mo-
tivating application for the development of the DKF. BCIs use neural
measurements from the brain to enable voluntary control of external de-
vices (Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002;
Hochberg & Donoghue, 2006; Brandman, Cash, & Hochberg, 2017). In-
tracortical BCI systems (iBCIs) have been shown to provide users with
paralysis the ability to control computer cursors (Pandarinath et al., 2015;
Jarosiewicz et al., 2015; Nuyujukian et al., 2018), robotic arms (Hochberg
et al., 2012; Collinger et al., 2013), and functional electrical stimulation sys-
tems (Bouton et al., 2016; Ajiboye et al., 2017) with the real-time decoded
neural activity generated during attempted movement. State-of-the-art de-
coding approaches have been based on the Kalman filter (Pandarinath et al.,
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2017; Jarosiewicz et al., 2015; Gilja et al., 2015), with observed neural fea-
tures and latent motor intention used to move external devices. To construct
a supervised training set, motor intentions are inferred as vectors from the
instantaneous cursor position to the target position Zt (Brandman, Hosman
et al., 2018).

The DKF is a natural choice for closed-loop neural decoding using
iBCIs for a few reasons. First, evidence suggests that neurons have very
complex behavior. Neurons in the motor cortex have been shown to en-
code direction of movement (Georgopoulos, Kettner, & Schwartz, 1988),
velocity (Schwartz, 1994), acceleration (Paninski, Fellows, Hatsopoulos, &
Donoghue, 2004), muscle activation (Lemon, 2008; Pohlmeyer, Solla, Per-
reault, & Miller, 2007), proprioception (Bensmaia & Miller, 2014), visual
information related to the task (Rao & Donoghue, 2014), and prepara-
tory activity (Churchland et al., 2012). Hence, iBCI-related recordings are
highly complex and nonlinear (Vargas-Irwin, Brandman, Zimmermann,
Donoghue, & Black, 2015). Moving away from the linear constraints of the
Kalman filter could potentially capture more of the inherent complexity of
the signals, resulting in higher end-effector control for the user.

Second, evidence suggests that the quality of control directly relates to
the rate at which the decoding systems perform real-time decoding. Mod-
ern iBCI sytems update velocity estimates on the order of 20 ms (Jarosiewicz
et al., 2015) or even 1 ms (Pandarinath et al., 2015). Thus, any potential filter-
ing technique must be computationally feasible to implement for real-time
use.

Third, new technologies have allowed neuroscientists to simultaneously
record from increasingly large numbers of neurons. In fact, the number
of observed brain signals has been growing exponentially (Stevenson &
Kording, 2011). By contrast, the dimensionality of the underlying device
being controlled remains small, generally not exceeding 10 dimensions
(Wodlinger et al., 2015; Vargas-Irwin et al., 2010).

We previously reported how three people with spinal cord injuries used
the DKF with GP regression to rapidly gain closed-loop neural control
(Brandman, Burkhart et al., 2018; Brandman, Hosman et al., 2018). Here,
as an additional proof of concept, we present data from a person with amy-
otrophic lateral sclerosis (participant T9) using the DKF. In these research
sessions, the observations constitute neural data collected from an electrode
array surgically implanted in the participant’s brain, and the hidden states
represent the intended cursor velocity. The DKF prediction of intended cur-
sor velocity is used at each time step to move the cursor. For learning the
DKF parameters, training data are collected during an initial calibration
phase in which the participant is instructed to attempt to move the cur-
sor to various target locations, and the intended velocity at each time step
is assumed to be pointing from the current cursor position to the instructed
target. GP regression was used to learn f , and for computational efficiency,
Q was assumed to be constant and set as the covariance of the residuals.
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The participant’s performance using an out-of-the-box DKF was compara-
ble to state-of-the-art decoders based on modifications of the Kalman filter
designed specifically for the BrainGate2 clinical trials.

4.6.1 Participant. The participant in this study was T9, a 52-year-old
right-handed male with paralysis from late-stage amyotrophic lateral scle-
rosis (ALSFRS-R score = 7; see Cedarbaum et al., 1999, for a detailed expla-
nation of this metric). T9 underwent surgical placement of two 96-channel
intracortical silicon microelectrode arrays (Maynard et al., 1997) (1.5 mm
electrode length, Blackrock Microsystems, Salt Lake City, UT) in the mo-
tor cortex as previously described (Kim, Simeral, Hochberg, Donoghue, &
Black, 2008; Simeral et al., 2011). Data were used from trial (postimplant)
days 292 and 293.

4.6.2 Signal Acquisition. Raw neural signals for each channel (electrode)
were sampled at 30 kHz using the NeuroPort System (Blackrock Mi-
crosystems, Salt Lake City, UT). Further signal processing and neural de-
coding were performed using the xPC target real-time operating system
(Mathworks, Natick, MA). Raw signals were downsampled to 15 kHz for
decoding and denoised by subtracting an instantaneous common average
reference (Gilja et al., 2015; Jarosiewicz et al., 2015) using 40 of the 96 chan-
nels on each array with the lowest root mean square value (selected based
on their baseline activity during a 1 minute reference block run at the start
of each session). The denoised signal was bandpass-filtered between 250 Hz
and 5000 Hz using an 8th-order noncausal Butterworth filter (Masse et al.,
2015). Spike events were triggered by crossing a threshold set at 3.5 times
the root mean square amplitude of each channel, as determined by data
from the reference block. The neural feature used was total power in the
bandpass-filtered signal (Jarosiewicz et al., 2015; Brandman, Hosman et al.,
2018). Neural features were binned in 20 ms nonoverlapping increments
for decoding. We used the top 40 features ranked by signal-to-noise-ratio
(Malik et al., 2015).

4.6.3 Decoder Calibration. Decoder calibration was performed using the
standard radial-8 task (Simeral et al., 2011; Gilja et al., 2015) using custom-
built software running Matlab. An LCD monitor was placed 55 to 60 cm
at a comfortable angle and orientation to T9. Targets (size = 2.4 cm, visual
angle = 2.5◦) were presented sequentially in a pseudorandom order, alter-
nating between one of eight radially distributed targets and a center target
(radial target distance from center = 12.1 cm, visual angle = 12.6◦). Success-
ful target acquisition required the user to place the cursor (size = 1.5 cm,
visual angle = 1.6◦) within the target’s diameter for 300 ms, before a pre-
determined timeout of 15 seconds. Target timeouts resulted in the cursor
moving directly to the intended target, with immediate presentation of the
next target.
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Calibration began with 2 minutes of open-loop presentation of a cursor;
that is, the cursor moved automatically to pseudorandomly presented tar-
gets in a straight path. During this time, T9 was instructed to “imagine”
or “attempt” to move the computer cursor as if he had control of it. After 2
minutes, initial hyperparameters for the GP were learned. Next, T9 acquired
targets for 3 minutes with 80% of the component of the decoded vector per-
pendicular to the vector between the cursor and the target (Jarosiewicz et al.,
2013; Velliste, Perel, Spalding, Whitford, & Schwartz, 2008), in order to assist
with target acquisition. GP hyperparameters were then recomputed with all
of the available data. The radial-8 task was repeated two more times with
the attenuated components at 50% and 20%, for a total of 11 minutes of cali-
bration data collected. We collected 3000 data points randomly subsampled
from the 11 minutes of collected data, using all 192 neural features (96 fea-
tures per array, two arrays).

4.6.4 Performance Measurement. We quantified the performance of the
DKF decoder with the mFitts1 task (Gilja et al., 2015; Simeral et al., 2011).
Under the Fitts model (Fitts, 1954), movement time (MT) varies linearly
with the index of difficulty (ID) as

MT = a · ID + b, (4.4)

where the parameters a and b depend on the input device. Parameters are
estimated using linear regression on observed (ID, MT) pairs for each input
method. These estimates are then used to evaluate filter performance.

A single target was presented on the screen in a pseudorandom location,
with one of three pseudorandomly fixed diameters (size = 1.6 cm, 3.5 cm,
and 5.6 cm; visual angles 1.7◦, 3.7◦, and 5.8◦). Targets were acquired by hav-
ing the cursor contact the target for 500 ms, within a timeout of 10 seconds.
For the mFitts1 task, the index of difficulty for each trial was calculated as
follows,

ID = log2

[
D
W

+ 1
]

,

where D is the distance from the cursor’s start position to the goal and W
is the sum of the target’s diameter and cursor’s radius. Hence, D

W reflects a
measure of difficulty for acquiring targets.

4.6.5 Results. T9 acquired 98% of targets presented over two research
sessions (N = 299) with the mFitts1 task. The Fitts regression parameters
were comparable to the previously described performance by different par-
ticipants (T6 and T7) using the ReFIT decoder (Gilja et al., 2015, Fig. 4.6.5,
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Figure 4: On the left, we plot movement time versus index of difficulty for T9
during the radial-8 task. On the right, we compare Fitts metrics for the DKF
to those for Kalman ReFit. In particular, the slope and intercept from the line
of best fit on the left correspond to the yellow bars for slope and intercept on
the right. Error bars correspond to a 95% confidence interval for each estimated
parameter. Following the discussion in section 4.6.4, lower values for the slope
parameter (a in equation 4.4) correspond to less of an increase in movement time
for more difficult targets. Estimates for the intercept parameter correspond to b
in equation 4.4.

slope = 1.08 ± 0.06, p < 1.2 × 10−30, intercept = 1.6 ± 1.3, p < 2.2 × 10−41).
(See Figure 4 for details.)

5 Discussion

The DKF is a novel filtering method that should prove to be a helpful ad-
dition to the filtering toolbox. It provides a fast, analytic approximation for
models with linear, gaussian dynamics but nonlinear, nongaussian obser-
vations. The approximations underlying the DKF tend to improve as the
dimensionality of the observation space increases relative to the dimension-
ality of the state space. For known models, the DKF is quite similar in nature
to the G-ADF; however, when models must be learned from training data,
as is the case for many practical applications, the G-ADF entails integrals
that require approximation and does not provide a closed-form update. In
comparison to Laplace or saddle-point approximations, the DKF provides a
more global approximation to the true filtering distribution. As we demon-
strate in our examples, there are many families of state-space models that
render the EKF and UKF ineffective but for which the DKF performs well.

In applications where the model must be learned from supervised train-
ing data prior to filtering, off-the-shelf nonlinear or nonparametric regres-
sion tools can be used to learn the conditional mean and variance for the
DKF directly, avoiding the more complicated task of learning the complete
observation model p(xt |zt ). Using the DKF in this way appears to be novel
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within the large literature on state-space models. Most approaches either
learn a fully generative model and invert it for filtering (this includes the
of use discriminative methods for training filters derived from generative
models—Abbeel, Coates, Montemerlo, Ng, & Thrun, 2005; Hess & Fern,
2009) or learn a fully discriminative model that directly predicts states from
the sequence of observations. The DKF allows a generative model for the
state dynamics to be combined in a principled way with a discriminative
model for predicting the states from the observations at individual time
steps. We think that the ability to easily incorporate off-the-shelf discrimi-
native learning tools into a closed-form filtering equation is one of the most
exciting and useful aspects of this methodology.

Many promising opportunities exist to apply and extend the DKF. For
example, using a gaussian approximation for p(zt |xt ) can permit a more
principled approach to mitigating nonstationarities that occur in the mea-
surement model. In neural decoding, a large change in the behavior of a sin-
gle neuron that occurs between model training and filter use can result in
significant performance degradation for the decoder. In the DKF framework
with a GP regression model for p(zt |xt ), one can select a kernel function
that ignores large differences along any single dimension. Clinical results
demonstrate that this modification allows the filter to be more robust to er-
ratic firing patterns in an arbitrary single neuron. (See Brandman, Burkhart
et al., 2018, for further details.) It seems that this approach could be readily
applied more generally to increase filter resilience to nonstationarities.

While the DKF assumes an approximately gaussian posterior, for gen-
eral filtering models there may also be ways to incorporate the underlying
gaussian approximation for p(zt |xt ) to improve performance. Methods that
preserve the full form of the filtering distribution, such as particle filters,
could be combined with alternatively specified measurement models, as in
equation 2.15, to create general-purpose filters that are both more conve-
nient to learn from data and use in filtering applications. The DKF marks a
first step in this direction.

Appendix A: Technical Details

This appendix provides the derivations used in sections 4.2 and 4.3, along
with some information on numerical stability and details for the discrimi-
native learning methods employed in section 4.5.

A.1 Kalman Observation Mixtures. For the model in section 4.2 we
provide analytic expressions for the integrals in equation 2.11, which are
needed for the G-ADF and the DKF (using νt = 0 and Mt = S for the DKF).
Define

Ut	 = (M−1
t + Hᵀ

	 �−1
	 H	)−1,
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yt	 = Ut	(M−1
t νt + Hᵀ

	 �−1
	 (xt − b	)),

κt	 = ηd(νt; 0, Mt )ηn(xt; b	,�	)/ηd(yt	; 0,Ut	).

Then

a =
∫

p(xt |zt )ηd(zt; νt, Mt ) dzt

=
L∑

	=1

π	

∫
ηn(xt; b	 + H	zt,�	)ηd(zt; νt, Mt ) dzt

=
L∑

	=1

π	ηn(xt; b	 + H	νt,�	 + H	MtH
ᵀ
	 ),

b =
∫

zt p(xt |zt )ηd(zt; νt, Mt ) dzt

=
L∑

	=1

π	

∫
ztηn(xt; b	 + H	zt,�	)ηd(zt; νt, Mt ) dzt

=
L∑

	=1

π	κt	

∫
ztηd(zt; yt	,Ut	) dzt =

L∑
	=1

π	κt	yt	,

c =
∫

ztz
ᵀ
t p(xt |zt )ηd(zt; νt, Mt ) dzt =

L∑
	=1

π	κt	

∫
ztz

ᵀ
t ηd(zt; yt	,Ut	) dzt

=
L∑

	=1

π	κt	(Ut	 + yt	yᵀ
t	).

A.2 Independent Bernoulli Mixtures. For the model in section 4.3, we
provide analytic expressions for the integrals in equation 2.11 for the special
case of νt = 0 and Mt = S = Id, which are needed for the DKF. For each k =
1, . . . , d, define Nk = {i : di = k}, �k = {γi : i ∈ Nk}, nk = |�k|, and let γk,1 <

· · · < γk,nk denote the sorted (distinct) values in �k, using γk,0 = −∞ and
γk,nk+1 = +∞. Using η(u) = η1(u; 0, 1) to denote the standard normal pdf
and φ(v ) = ∫ v

−∞ η(u)du to denote the corresponding distribution function,
define

�k j =
∫ γk, j

γk, j−1

η(u)du = φ(γk, j ) − φ(γk, j−1),

�′
k j =

∫ γk, j

γk, j−1

uη(u)du − �k j = η(γk, j−1) − η(γk, j ) − �k j,
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�′′
k j =

∫ γk, j

γk, j−1

u2η(u)du − �k j − 2�′
k j = γk, j−1η(γk, j−1) − γk, jη(γk, j ) − 2�′

k j,

ρ	i j = α	i1{γk, j ≤ γi} + β	i1{γi < γk, j}, (i ∈ Nk),

for k = 1, . . . , d and j = 1, . . . , nk + 1 and 	 = 1, . . . , L.
Let xtNk = (xti : i ∈ Nk) and define

D	k j(xtNk ) =
∏
i∈Nk

ρ
xti
	i j(1 − ρ	i j )1−xti ,

p	(xtNk |ztk) =
∏
i∈Nk

(
α

xti
	i (1 − α	i)1−xti1{ztk < γi} + β

xti
	i (1 − β	i)1−xti1{ztk ≥ γi}

)

=
nk+1∑
j=1

1{γk, j−1 ≤ ztk < γk, j}D	k j(xtNk ),

so that p(xt |zt ) = ∑L
	=1 π	

∏d
k=1 p	(xtNk |ztk) and (with S = Id),

p(xt |zt )ηd(zt; 0, S) = p(xt |zt )
d∏

k=1

η(ztk) =
L∑

	=1

π	

d∏
k=1

p	(xtNk |ztk)η(ztk).

Hence, using δkr = 1{k = r},

a =
∫

p(xt |zt )ηd(zt; 0, S) dzt =
L∑

	=1

π	

d∏
k=1

∫
p	(xtNk |ztk)η(ztk) dztk

=
L∑

	=1

π	

d∏
k=1

nk+1∑
j=1

D	k j(xtNk )
∫ γk, j

γk, j−1

η(ztk) dztk

=
L∑

	=1

π	

d∏
k=1

nk+1∑
j=1

D	k j(xtNk )�k j,

br =
∫

ztr p(xt |zt )ηd(zt; 0, S) dzt

=
L∑

	=1

π	

d∏
k=1

nk+1∑
j=1

D	k j(xtNk )(�k j + �′
k jδkr),

crs =
∫

ztrzts p(xt |zt )ηd(zt; 0, S) dzt

=
L∑

	=1

π	

d∏
k=1

nk+1∑
j=1

D	k j(xtNk )(�k j + �′
k jδkr + �′

k jδks + �′′
k jδkrδks),
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where in equation 2.11, the vector b = (br : r = 1, . . . , d) and the matrix c =
(crs : r, s = 1, . . . , d). We have f (x) = b/a and Q(x) = c/a − f (x) f (x)ᵀ.

A.3 Measures to Prevent Numerical Instabilities. The covariance ma-
trix �t must be positive definite for the DKF algorithm to make sense. As
n gets large, using Q(xt ) = V(Zt |Xt = xt ), the probability that �t is posi-
tive definite goes to 1 (see lemma 1 below). However, when n is small or
when Q is learned, �t will often not be positive definite. An easy remedy
is to force Q−1(x) − S−1 to be positive semidefinite for every x by shrink-
ing the (generalized) eigenvalues of Q(x) for any x where this constraint is
not satisfied. In particular, beginning with a target Q = Q(x) for a given
fixed x, consider the generalized eigenvalue decomposition QV = SVD,
where V ∈ R

d×d is invertible and D ∈ R
d×d is diagonal. (This decomposi-

tion can be computed in Matlab using [V,D]=eig(Q,S).) Let D ∧ 1 denote
the element-wise minimum of D and 1, and define Q′ = SV (D ∧ 1)V−1.
By redefining Q(x) as Q′, we will ensure that Q−1(x) − S−1 is positive
semidefinite, as required. Moreover, Q′ will be the same as the original Q
if this condition was already satisfied by the original Q, showing that this
modification to the DKF algorithm does not affect our asymptotic anal-
ysis. We used this modification for all of the experiments with the DKF.
The robust DKF does not require this modification. Here is a proof of the
claims about this method: Q−1 − S−1 is positive semidefinite if and only
if S − Q is positive semidefinite if and only if S−1/2(S − Q)S−1/2 is posi-
tive semidefinite. We have S−1/2(S − Q)S−1/2 = S−1/2(S − SVDV−1)S−1/2 =
I − S1/2VD(S1/2V )−1 = (S1/2V )(I − D)(S1/2V )−1, which is positive semidefi-
nite if and only if all entries of D (which is diagonal) are ≤ 1. Replacing D
with D ∧ 1 exactly enforces this constraint.

For our DKF experiments with nonlinear state dynamics using an ex-
tended Kalman filter (EKF) approximation (not described here), we found
that the DKF-EKF became unstable for small n because the EKF approxi-
mation to the nonlinearity was quite poor. To remedy this, we modified the
DKF algorithm to prevent μt from diverging too far from νt and f (xt ) (the
posterior means of Zt given X1:t−1 and given Xt , respectively). In particular,
we forced |μt |2 ≤ |νt |2 + | f (xt )|2 (by scaling μt whenever its norm exceeded
our bound). For larger n, once the DKF approximation becomes more ac-
curate, this constraint was always satisfied in our experiments without in-
tervention, but for smaller n, enforcing it was important for preventing
numerical instabilities. The robust DKF did not require this modification.
Although not used in this letter, we report this modification in case others
find it useful in their application.

A.4 Nadaraya-Watson Kernel Regression. We can learn f : Rn → R
d

with a variety of regression methods. The well-known Nadaraya-Watson
kernel regression estimator (Nadaraya, 1964; Watson, 1964) is
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f̂ (x) =
∑m

i=1 z′
iκX (x, x′

i)∑m
i=1 κX (x, x′

i)
,

where the κX (x, x′) is a nonnegative kernel and m is the size of the train-
ing set. Bandwidth can be chosen using rule-of-thumb or with leave-one-
out cross-validation, the latter scaling as O(m2). Evaluation of f̂ scales like
O(m). In the examples, we use a gaussian kernel with a bandwidth chosen
by minimizing leave-one-out mean squared error (MSE) on the training set.

A.5 Neural Network Regression. We can also learn f as a neural net-
work (NN). NNs are attractive for online filtering, because evaluation of
f̂ scales O(1) with the size of the training set. With MSE as an objec-
tive function, we optimize parameters over the training set. Typically op-
timization continues until performance stops improving on a validation
subset (to prevent overfitting), but instead we use Bayesian regulariza-
tion to ensure network generalizability (MacKay, 1992; Foresee & Hagan,
1997). Training costs depend on the training algorithm chosen. Traditional
optimizers include stochastic gradient descent, scaling with O(m); scaled
conjugate gradient, with O(m2); and Levenberg-Marquardt, with O(m3)
(Castillo, Guijarro-Berdiñas, Fontenla-Romero, & Alonso-Betanzos, 2010),
where m is the size of the training set. More recently, Hessian-free ap-
proaches have been developed to train NNs on larger data sets (Schmid-
huber, 2015). Training costs also grow with d, depending on the choice of
architecture.

We implemented all feedforward neural networks with Matlab’s Neural
Network Toolbox R2019a. Our implementation consisted of a single hid-
den layer of tansig neurons trained via Levenberg-Marquardt optimization
(Levenberg, 1944; Marquardt, 1963; Hagan & Menhaj, 1994) with Bayesian
regularization.

A.6 Gaussian Process Regression. Gaussian process (GP) regression is
another popular method for nonlinear regression (Rasmussen & Williams,
2006). The idea is to put a prior distribution on the function f and approxi-
mate f with its posterior mean given training data. We first briefly describe
the case d = 1. We form an m×n-dimensional matrix X ′ by concatenating
the 1×n-dimensional vectors X ′

i and an m×d-dimensional matrix Z′ by con-
catenating the vectors Z′

i. We assume that p(z′
i|x′

i, f ) = η(z′
i; f (x′

i), σ
2), where

f is sampled from a mean-zero GP with covariance kernel K(·, ·). Under this
model,

f̂ (x) = E( f (x)|Z′, X ′) = K(x, X ′)(K(X ′, X ′) + σ 2Im)−1Z′,

where K(x, X ′) denotes the 1×m vector with ith entry K(x, X ′
i ), K(X ′, X ′) de-

notes the m×m matrix with i jth entry K(X ′
i , X ′

j ), Z′ is a column vector, and
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Im is the m×m identity matrix. The noise variance σ 2 and any parameters
controlling the kernel shape are hyperparameters. For our examples, we
used the radial basis function kernel with two parameters: length scale and
maximum covariance. These hyperparameters were selected via maximum
likelihood. For d > 1, we repeated this process for each dimension to sepa-
rately learn the coordinates of f . Training costs for a single dimension scale
as O(m3). Sparse approximations to GPs can reduce training requirements
to O(m · N2

S ) where NS is the size of the sparse GP (Quiñonero Candela &
Rasmussen, 2005). Evaluation of f̂ scalesO(m) for each dimension, orO(NS)
for sparse approximations.

All GP training was performed using the publicly available GPML pack-
age (Rasmussen & Nickisch, 2010).

A.7 Comparison with a Long Short-Term Memory Neural Network.
An LSTM is a stateful recurrent neural network designed to overcome er-
ror backflow problems (Hochreiter & Schmidhuber, 1997). Such recurrent
neural networks have previously been shown to outperform state-of-the-art
Kalman-based filters on this primate neural decoding task and so provide
a good point of comparison (Sussillo, Stavisky, Kao, Ryu, & Shenoy, 2016;
Sussillo et al., 2012; Pandarinath et al., 2018; Hosman et al., 2019). While
there are many variants on the LSTM architecture, none seem to univer-
sally improve on the basic design (Jozefowicz, Zaremba, & Sutskever, 2015;
Greff, Srivastava, Koutník, Steunebrink, & Schmidhuber, 2016). LSTM opti-
mization uses many of the same methods that work for feedforward NN’s
(Schmidhuber, 2015). Training and evaluation requirements are similar.

All LSTM trials were conducted with TensorFlow r1.4.0 in a Python 3.6.8
environment. The LSTM cell used in these trials was built from scratch in
TensorFlow following Gers, Schmidhuber, and Cummins (2000). Dropout
was used to prevent overfitting (Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014), but it was only applied to feedforward connec-
tions, not recurrent connections (Pham, Bluche, Kermorvant, & Louradour,
2014; Zaremba, Sutskever, & Vinyals, 2014). The recurrent states and out-
puts at each intermediate time step were batch-normalized to accommodate
internal covariate shift (Ioffe & Szegedy, 2015). Model parameters were ini-
tialized via a Xavier-type method (Glorot & Bengio, 2010) designed to sta-
bilize variance from layer to layer. Optimization was then performed with
Adadelta (Zeiler, 2012), an algorithm designed to improve upon Adagrad
(Duchi, Hazan, & Singer, 2011) with the explicit goals of decreasing sen-
sitivity to hyperparameters and permitting the learning rate to sometimes
increase.

Appendix B: Mathematical Results

Our main technical result is theorem 2. After stating the theorem, we trans-
late it into the setting of the letter. Probability density functions (pdfs) are
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with respect to Lebesgue measure over R
d. ‖ · ‖1 and ‖ · ‖∞ denote the L1

and L∞ norms, respectively,
w→ denotes weak convergence of probability

measures (equivalent, for instance, to convergence of the expected values
of bounded continuous functions), and δc denotes the unit point mass at
c ∈ R

d. Define the Markov transition density τ (y, z) = ηd(z; Ay, �), and let
τh denote the function

(τh)(z) =
∫

τ (y, z)h(y)dy

for an arbitrary, integrable h. Define p(z) = ηd(z; 0, S), where S satisfies S =
ASAᵀ + �.
Theorem 2. Fix pdfs sn and un (n ≥ 1) so that the pdfs

pn = unτ sn/p
‖unτ sn/p‖1

(B.1)

are well defined for each n. Suppose that for some b ∈ R
d and some probability

measure P over Rd:

A1. sn
w→ P as n → ∞;

A2. There exists a sequence of gaussian pdfs (s′
n) such that ‖sn − s′

n‖1 → 0 as
n → ∞;

A3. un
w→ δb as n → ∞;

A4. There exists a sequence of gaussian pdfs (u′
n) such that ‖un − u′

n‖1 → 0 as
n → ∞;

A5. pn
w→ δb as n → ∞;

Then:

C1. s′
n

w→ P as n → ∞;
C2. u′

n
w→ δb as n → ∞;

C3. The pdf

p′
n = u′

nτ s′
n/p

‖u′
nτ s′

n/p‖1

is well defined and gaussian for n sufficiently large;
C4. p′

n
w→ δb as n → ∞;

C5. ‖pn − p′
n‖1 → 0 as n → ∞.

Remark 1. The L1 distance between pdfs is equivalent to the total variation
distance between the respective probability measures.

Remark 2. We are not content to show the existence of a sequence of gaus-
sian pdfs (p′

n) that satisfy C4 and C5. Rather, we are trying to show that the
specific p′

n defined in C3 satisfies C4 and C5 regardless of the choice of u′
n

and s′
n.
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Remark 3. An inspection of the proof shows that the pdf

r′
n = p′

n p/‖p′
n p‖1 = u′

nτ s′
n/‖u′

nτ s′
n‖1

is well defined and gaussian, with r′
n

w→ δb and

‖pn − r′
n‖1 ≤ An + Bn + Cn,

where the terms An, Bn,Cn are those defined in equation B.2, each of which
tends to zero in the limit. Thus ‖pn − r′

n‖1 → 0. These r′
n are precisely the

estimates formed using the robust DKF.

Remark 4. Suppose the pdfs sn, s′
n, un, u′

n (n ≥ 1), the constant b, and the
probability measure P are themselves random, defined on a common prob-
ability space, so that pn is well defined with probability one, and suppose
that the limits in A1 to A5 hold in probability. Then the probability that p′

n
is a well-defined, gaussian pdf converges to one, and the limits in C1 to C5
hold in probability.

For the setting of this letter, first fix t ≥ 1, and note that p is the com-
mon pdf of each Zt and τ is the common conditional pdf of Zt given Zt−1.
The limit of interest is for increasing dimension (n) of a single observa-
tion. To formalize this, we let each Xt be infinite dimensional and con-
sider observing only the first n dimensions, denoted X1:n

t ∈ R
n. Similarly,

X1:n
1:t = (X1:n

1 , . . . , X1:n
t ). We will abuse notation and use P(Zt = ·|W ) to de-

note the conditional pdf of Zt given another random variable W . These con-
ditional pdfs (formally defined via disintegrations) exist under very mild
regularity assumptions (Chang & Pollard, 1997). Note that we are in the
setting of remark 4, where the randomness comes from X1:t, Z1:t . With this
in mind, define

un(·) = un(·; X1:n
t ) = P(Zt = ·|X1:n

t )

u′
n(·) = u′

n(·; X1:n
t ) = ηd(·; fn(X1:n

t ), Qn(X1:n
t ))

sn(·) = sn(·; X1:n
1:t−1) = P(Zt−1 = ·|X1:n

1:t−1) (t > 1)

s′
n(·) = s′

n(·; X1:n
1:t−1) = ηd(·;μt−1,n(X1:n

1:t−1), �t−1,n(X1:n
1:t−1)) (t > 1)

pn(·) = pn(·; X1:n
1:t ) = P(Zt = ·|X1:n

1:t )

p′
n(·) = p′

n(·; X1:n
1:t ) = ηd(·;μt,n(X1:n

1:t ), �t,n(X1:n
1:t ))

b = Zt

P(·) = P(·; Zt−1) = δZt−1 (t > 1),

and define sn ≡ s′
n ≡ P ≡ p when t = 0. The pdf u′

n is our gaussian approx-
imation of the conditional pdf of Zt for a given X1:n

t . We have added the
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The Discriminative Kalman Filter 1005

subscript n to f and Q from the main text to emphasize the dependence on
the dimensionality of the observations. The pdfs s′

n and p′
n are our gaussian

approximations of Zt−1 and Zt given X1:n
1:t−1 and X1:n

1:t , respectively. Again, we
added the subscript n to μt and �t from the text. Note that equation B.1 is
simply a condensed version of equation 2.4 in the main text, and, for the
same reason, the p′

n defined in C3 is the same p′
n defined above.

The Bernstein–von Mises (BvM) theorem gives conditions for the exis-
tence of functions fn and Qn so that A3 to A4 hold in probability. We refer
readers to van der Vaart (1998) for details. Very loosely speaking, the BvM
theorem requires Zt to be completely determined in the limit of increas-
ing amounts of data, but not completely determined after observing only
a finite amount of data. The simplest case is when X1:n

t are conditionally
independent and identically distributed given Zt , and distinct values of Zt

give rise to distinct conditional distributions for X1:n
t , but the result holds

in much more general settings. A separate application of the BvM theorem
gives A5 (in probability). In applying the BvM theorem to obtain A5, we
also obtain the existence of a sequence of (random) gaussian pdfs (p′′

n) such
that ‖pn − p′′

n‖1 → 0 (in probability), but we do not make use of this result,
and, as explained in remark 2, we care about the specific sequence (p′

n) de-
fined in C3.

As long as the BvM theorem is applicable, the only remaining thing to
show is A1 and A2 (in probability). For the case t = 1, we have sn ≡ s′

n ≡
P ≡ p, so A1 and A2 are trivially true, and the theorem holds. For any case
t > 1, we note that sn and s′

n are simply pn and p′
n, respectively, for the case

t − 1. So the conclusions C4 and C5 in the case t − 1 become the assumptions
A1 and A2 for the subsequent case t. The theorem then holds for all t ≥ 1
by induction. The key conclusion is C5, which says that our gaussian filter
approximation p′

n will be close in total variation distance (see remark 1)
to the true Bayesian filter distribution pn with high probability when n is
large.

Proof. C1 follows immediately from A1 and A2. C2 follows immediately
from A3 and A4. C3 and C4 are proved in lemma 1 below. To show C5, we
first bound

‖pn − p′
n‖1 ≤

∥∥∥∥pn − pn p
p(b)

∥∥∥∥
1︸ ︷︷ ︸

An

+
∥∥∥∥ pn p

p(b)
− pn p

‖pn p‖1

∥∥∥∥
1︸ ︷︷ ︸

Bn

+
∥∥∥∥ pn p
‖pn p‖1

− p′
n p

‖p′
n p‖1

∥∥∥∥
1︸ ︷︷ ︸

Cn

+
∥∥∥∥ p′

n p
‖p′

n p‖1
− p′

n p
p(b)

∥∥∥∥
1︸ ︷︷ ︸

B′
n

+
∥∥∥∥ p′

n p
p(b)

− p′
n

∥∥∥∥
1︸ ︷︷ ︸

A′
n

. (B.2)

Since pn
w→ δb and p(z) is bounded and continuous,
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An =
∫

pn

∣∣∣∣1 − p
p(b)

∣∣∣∣ = EZn∼pn

∣∣∣∣1 − p(Zn)
p(b)

∣∣∣∣ →
∣∣∣∣1 − p(b)

p(b)

∣∣∣∣ = 0

and

Bn =
∫

pn p
‖pn p‖1

∣∣∣∣‖pn p‖1

p(b)
− 1

∣∣∣∣ =
∣∣∣∣‖pn p‖1

p(b)
− 1

∣∣∣∣
=

∣∣∣∣EZn∼pn |p(Zn)|
p(b)

− 1
∣∣∣∣ →

∣∣∣∣ p(b)
p(b)

− 1
∣∣∣∣ = 0.

Similarly, since p′
n

w→ δb,

A′
n =

∫
p′

n

∣∣∣∣1 − p
p(b)

∣∣∣∣ = EZn∼p′
n

∣∣∣∣1 − p(Zn)
p(b)

∣∣∣∣ →
∣∣∣∣1 − p(b)

p(b)

∣∣∣∣ = 0

and

B′
n =

∫
p′

n p
‖p′

n p‖1

∣∣∣∣‖p′
n p‖1

p(b)
− 1

∣∣∣∣ =
∣∣∣∣‖p′

n p‖1

p(b)
− 1

∣∣∣∣
=

∣∣∣∣EZn∼p′
n
|p(Zn)|

p(b)
− 1

∣∣∣∣ →
∣∣∣∣ p(b)

p(b)
− 1

∣∣∣∣ = 0.

All that remains is to show that Cn → 0.
We first observe that

pn p
‖pn p‖1

= unτ sn

‖unτ sn‖1
and

p′
n p

‖p′
n p‖1

= u′
nτ s′

n

‖u′
nτ s′

n‖1
.

Define

α = E(Y,Z)∼P×δbηd(Z; AY, �) = EY∼Pηd(b; AY, �) ∈ (0,∞).

Since sn
w→ P, un

w→ δb, and (z, y) �→ τ (y, z) = ηd(z; Ay, �) is bounded and
continuous, we have

‖unτ sn‖1 =
∫∫

ηd(z; Ay, �)sn(y)un(z)dy dz

= E(Yn,Zn )∼sn×unηd(Zn; AYn, �) → α.

Similarly, since s′
n

w→ P and u′
n

w→ δb,

‖u′
nτ s′

n‖1 =
∫∫

ηd(z; Ay, �)s′
n(y)u′

n(z)dy dz

= E(Yn,Zn )∼s′
n×u′

n
ηd(Zn; AYn, �) → α.
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Defining β = ηd(0; 0, �) ∈ (0,∞), gives

‖τh‖∞ ≤ sup
z

|(τh)(z)|

≤ sup
z,y

ηd(z; Ay, �)
∫

|h(t)|dt ≤ ηd(0; 0, �)‖h‖1 = β‖h‖1

for any integrable h. With these facts in mind, we obtain

Cn =
∥∥∥∥ unτ sn

‖unτ sn‖1
− u′

nτ s′
n

‖u′
nτ s′

n‖1

∥∥∥∥
1

≤
∥∥∥∥ unτ sn

‖unτ sn‖1
− u′

nτ sn

‖unτ sn‖1

∥∥∥∥
1
+

∥∥∥∥ u′
nτ sn

‖unτ sn‖1
− u′

nτ s′
n

‖u′
nτ s′

n‖1

∥∥∥∥
1

≤ ‖τ sn‖∞
‖unτ sn‖1

‖un − u′
n‖1 +

∥∥∥∥ τ sn

‖unτ sn‖1
− τ s′

n

‖u′
nτ s′

n‖1

∥∥∥∥
∞

‖u′
n‖1

≤ β

‖unτ sn‖1
‖un − u′

n‖1 +
∥∥∥∥ τ sn

‖unτ sn‖1
− τ sn

‖u′
nτ s′

n‖1

∥∥∥∥
∞

+
∥∥∥∥ τ sn

‖u′
nτ s′

n‖1
− τ s′

n

‖u′
nτ s′

n‖1

∥∥∥∥
∞

≤ β

‖unτ sn‖1
‖un − u′

n‖1 + ‖τ sn‖∞
‖unτ sn‖1

∣∣∣∣1 − ‖unτ sn‖1

‖u′
nτ s′

n‖1

∣∣∣∣ + ‖τ sn − τ s′
n‖∞

‖u′
nτ s′

n‖1

≤ β

‖unτ sn‖1︸ ︷︷ ︸
→β/α

‖un − u′
n‖1︸ ︷︷ ︸

→0

+ β

‖unτ sn‖1︸ ︷︷ ︸
→β/α

∣∣∣∣1 − ‖unτ sn‖1

‖u′
nτ s′

n‖1

∣∣∣∣︸ ︷︷ ︸
→|1−α/α|=0

+ β

‖u′
nτ s′

n‖1︸ ︷︷ ︸
→β/α

‖sn − s′
n‖1︸ ︷︷ ︸

→0

.

Since α > 0, we see that Cn → 0, and the proof of the theorem is
complete. �

Remark 4 follows from standard arguments by making use of the equiv-
alence between convergence in probability and the existence of a strongly
convergent subsequence within each subsequence. The theorem can be ap-
plied to each strongly convergent subsequence.

Lemma 1 (DKF equation). If s′
n(z) = ηd(z; an,Vn) and u′

n(z) = ηd(z; bn,Un),
then defining

p′
n = u′

nτ s′
n/p

‖u′
nτ s′

n/p‖1
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gives

p′
n(z) = ηd(z; cn, Tn),

where Gn = AVnA� + �, Tn = (U−1
n + G−1

n − S−1)−1, and cn = Tn(U−1
n bn +

G−1
n Aan), as long as Tn is well defined and positive definite. Furthermore, if s′

n
w→ P

and u′
n

w→ δb, then p′
n is eventually well defined, and p′

n
w→ δb.

Proof. See above for the definition of τ , p, A, �, S. Assuming u′
nτ s′

n/p is
integrable, we have

p′
n(z) ∝ ηd(z; bn,Un)

ηd(z; 0, S)

∫
ηd(z; Ay, �) ηd(y; an,Vn) dy.

Since

∫
ηd(z; Ay, �) ηd(y; an,Vn) dy = ηd(z; Aan, AVnA� + �) = ηd(z; Aan, Gn)

and

ηd(z; bn,Un)
ηd(z; 0, S)

∝ exp(− 1
2 (z − bn)�U−1

n (z − bn))

exp(− 1
2 z�S−1z)

∝ exp
( − 1

2
(z�(U−1

n − S−1)z − 2z�U−1
n bn)

)

∝ exp
( − 1

2
(z − b′

n)�(U ′
n)−1(z − b′

n)
)

∝ ηd(z, b′
n,U ′

n)

for U ′
n = (U−1

n − S−1)−1 and b′
n = U ′

nU−1
n bn, we have

p′
n(z) ∝ ηd(z; b′

n,U ′
n) ηd(z; Aan, Gn)

∝ ηd(z; Tn((U ′
n)−1b′

n + G−1
n Aan), Tn)

= ηd(z; cn, Tn).

As the normal density integrates to 1, the proportionality constant drops
out.

Now suppose in addition that s′
n

w→ P and u′
n

w→ δb. Consider the charac-
teristic functions

φs′
n
(t) = EX∼s′

n
[eitX] = eit�an− 1

2 t�Vnt and φu′
n
(t) = eit�bn− 1

2 t�Unt
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for these random variables. Lévy’s continuity theorem (theorem 2.13 in
van der Vaart, 1998) implies that φs′

n
(t) → φP(t) and φu′

n
(t) → φδb (t) for all

t ∈ R
d where

φP(t) = eit�a− 1
2 t�Vt and φδb (t) = eit�b

denote the characteristic functions for P and δb, respectively. Here, a and V
are the mean vector and covariance matrix, respectively, of the distribution
P, which must itself be gaussian, although possibly degenerate. It follows
that

(it�an − 1
2

t�Vnt) → (it�a − 1
2

t�Vt)

and as φs′
n
(−t) → φP(−t),

(−it�an − 1
2

t�Vnt) → (−it�a − 1
2

t�Vt),

so t�an → t�a and t�Vnt → t�Vt for all t ∈ R
d. Choosing t to be coordi-

nate vectors, we see that this implies an → a and Vn → V coordinate-wise.
An analogous argument allows us to conclude that bn → b and Un → 0d×d.
Thus, Gn → G = AVA� + �, which is invertible, since � is positive definite,
and so G−1

n → G−1.
The Woodbury matrix identity gives

Tn = (U−1
n + G−1

n − S−1)−1 = Un − Un((G−1
n − S−1)−1 + Un)−1Un. (B.3)

Since Un → 0d×d and ((G−1
n − S−1)−1 + Un)−1 → G−1 − S−1, we see that

Tn → 0d×d.
To show Tn is eventually well defined and strictly positive definite, it

suffices to show the same for

T−1
n = U−1

n + Dn,

where we set Dn = G−1
n − S−1. For a symmetric matrix M ∈ R

d×d, let
λ1(M) ≥ · · · ≥ λd(M) denote its ordered eigenvalues. As a corollary to Hoff-
man and Wielandt’s result (see corollary 6.3.8 in Horn & Johnson, 2013), it
follows that

max
j

|λ j(T−1
n ) − λ j(U−1

n )| ≤ ‖Dn‖2,

where ‖ · ‖2 denotes the Frobenius norm. Since ‖Dn‖2 → ‖G−1 − S−1‖2 <

∞, the difference between the jth ordered eigenvalues for T−1
n and U−1

n is
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upper-bounded independent of n for 1 ≤ j ≤ d. Since Un is positive definite
and since Un → 0d×d, it follows that λ j(U−1

n ) ≥ λd(U−1
n ) = 1/λ1(Un) → ∞.

Hence, all eigenvalues of T−1
n must eventually become positive, so that T−1

n
becomes positive definite, hence also Tn.

For the means, we have

cn = TnU−1
n bn + TnG−1

n Aan.

Because Tn → 0d×d, G−1
n → G−1, and an → a, we have TnG−1

n Aan → �0. Using
equation B.3 for Tn gives

TnU−1
n bn = bn − Un((G−1

n − S−1)−1 + Un)−1bn,

where the eventual boundedness of (G−1
n − S−1)−1 + Un)−1 implies

Un((G−1
n − S−1)−1 + Un)−1bn → �0.

As bn → b, we conclude cn → b. Hence, p′
n

w→ δb. �

Acknowledgments

We thank participant T9 and T9’s family, the anonymous reviewers, and
E. Crites for their thoughtful feedback on the manuscript; B. Travers and
D. Rosler for administrative support; and C. Grant for clinical assis-
tance. This work was supported by the National Institutes of Health: Na-
tional Institute on Deafness and Other Communication Disorders, NIDCD
(R01DC009899), Rehabilitation Research and Development Service, Depart-
ment of Veterans Affairs (B6453R and N9228C); National Science Foun-
dation (DMS1309004); National Institute of Health (IDeA P20GM103645,
R01MH102840); Massachusetts General Hospital (MGH)–Deane Institute
for Integrated Research on Atrial Fibrillation and Stroke; Joseph Mar-
tin Prize for Basic Research; the Executive Committee on Research of
Massachusetts General Hospital; Canadian Institute of Health Research
(336092); Killam Trust Award Foundation; and the Brown Institute of Brain
Science. The content of this letter is solely our responsibility and does not
necessarily represent the official views of the National Institutes of Health,
the Department of Veterans Affairs, or the U.S. government.

References

Abbeel, P., Coates, A., Montemerlo, M., Ng, A. Y., & Thrun, S. (2005). Discriminative
training of Kalman filters. In Proceedings of Robotics: Science and Systems. Cam-
bridge, MA: MIT Press.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/5/969/1865334/neco_a_01275.pdf by guest on 01 Septem
ber 2021



The Discriminative Kalman Filter 1011

Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P.,
. . . Kirsch, R. F. (2017). Restoration of reaching and grasping movements through
brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-
concept demonstration. Lancet, 389, 1821–1830.

Arasaratnam, I., & Haykin, S. (2009). Cubature Kalman filters. IEEE Trans. Autom.
Control, 54(6), 1254–1269.

Arasaratnam, I., Haykin, S., & Elliott, R. J. (2007). Discrete-time nonlinear filtering
algorithms using Gauss–Hermite quadrature. Proc. IEEE, 95(5), 953–977.

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). Atutorial on particle
filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Trans. Signal
Process., 50(2), 174–188.

Battin, R. H., & Levine, G. M. (1970). Application of Kalman filtering techniques
to the Apollo program. In C. T. Leondes (Ed.), Theory and applications of Kalman
filtering. Neuilly sur Seine: NATO, Advisory Group for Aerospace Research and
Development.

Beneš, V. E. (1981). Exact finite-dimensional filters for certain diffusions with nonlin-
ear drift. Stochastics, 5(1–2), 65–92.

Bensmaia, S. J., & Miller, L. E. (2014). Restoring sensorimotor function through in-
tracortical interfaces: Progress and looming challenges. Nat. Rev. Neurosci., 15(5),
313–325.

Bishop, C. H., Etherton, B. J., & Majumdar, S. J. (2001). Adaptive sampling with the
ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev.,
129(3), 420–436.

Bouton, C. E., Shaikhouni, A., Annetta, N. V., Bockbrader, M. A., Friedenberg, D.
A., Nielson, D. M., . . . Rezai, A. R. (2016). Restoring cortical control of functional
movement in a human with quadriplegia. Nature, 533, 247–250.

Brandman, D. M., Burkhart, M. C., Kelemen, J., Franco, B., Harrison, M. T., &
Hochberg, L. R. (2018). Robust closed-loop control of a cursor in a person
with tetraplegia using gaussian process regression. Neural Comput., 30(11), 2986–
3008.

Brandman, D. M., Cash, S. S., & Hochberg, L. R. (2017). Review: Human intracortical
recording and neural decoding for brain-computer interfaces. IEEE Trans. Neural
Syst. Rehabil. Eng., 25, 1687–1696.

Brandman, D. M., Hosman, T., Saab, J., Burkhart, M. C., Shanahan, B. E., Cianci-
bello, J. G., . . . Hochberg, L. R. (2018). Rapid calibration of an intracortical brain–
computer interface for people with tetraplegia. J. Neural Eng., 15(2), 1–14.

Brown, R. G., & Hwang, P. Y. C. (2012). Introduction to random signals and applied
Kalman filtering, 4th ed. Hoboken, NJ: Wiley.

Buehner, M., McTaggart-Cowan, R., & Heilliette, S. (2017). An ensemble Kalman
filter for numerical weather prediction based on variational data assimilation:
VarEnKF. Mon. Weather Rev., 145(2), 617–635.

Burkhart, M. C. (2019). A discriminative approach to Bayesian filtering with applications
to human neural decoding. PhD diss., Brown University.

Butler, R. W. (2007). Saddlepoint approximations with applications. Cambridge: Cam-
bridge University Press.

Cappé, O., Godsill, S. J., & Moulines, E. (2007). An overview of existing methods and
recent advances in sequential Monte Carlo. Proc. IEEE, 95(5), 899–924.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/5/969/1865334/neco_a_01275.pdf by guest on 01 Septem
ber 2021



1012 M. Burkhart et al.

Cappé, O., Moulines, E., & Ryden, T. (2005). Inference in hidden Markov models. Berlin:
Springer-Verlag.

Castillo, E., Guijarro-Berdiñas, B., Fontenla-Romero, O., & Alonso-Betanzos, A.
(2010). A very fast learning method for neural networks based on sensitivity anal-
ysis. J. Mach. Learn. Res., 7, 1159–1182.

Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., &
Nakanishi, A. (1999). The ALSFRS-R: A revised ALS functional rating scale
that incorporates assessments of respiratory function. J. Neurol. Sci., 169(1), 13–
21.

Chang, J. T., & Pollard, D. (1997). Conditioning as disintegration. Stat. Neerl., 51(3),
287–317.

Chen, Z. (2003). Bayesian filtering: From Kalman filters to particle filters, and be-
yond. Statistics, 182(1), 1–69.

Choo, K., & Fleet, D. J. (2001). People tracking using hybrid Monte Carlo filtering. In
Proc. Int. Conf. Comput. Vis. (vol. 2, pp. 321–328). Piscataway, NJ: IEEE.

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P.,
Ryu, S. I., & Shenoy, K. V. (2012). Neural population dynamics during reaching.
Nature, 487(7405), 1–20.

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber,
D. J., . . . Schwartz, A. B. (2013). High-performance neuroprosthetic control by an
individual with tetraplegia. Lancet, 381(9866), 557–564.

Daum, F. E. (1984). Exact finite dimensional nonlinear filters for continuous time
processes with discrete time measurements. In Proceedings of the IEEE Conf. Decis.
Control (pp. 16–22). Piscataway, NJ: IEEE.

Daum, F. E. (1986). Exact finite-dimensional nonlinear filters. IEEE Trans. Autom. Con-
trol, 31(7), 616–622.

Daum, F. E., & Huang, J. (2003). Curse of dimensionality and particle filters. In Pro-
ceedings of the 2003 IEEE Aerosp. Conf. Proc. (vol. 4). Piscataway, NJ: IEEE.

del Moral, P. (1996). Nonlinear filtering using random particles. Theory Probab. Appl.,
40(4), 690–701.

Douc, R., & Cappé, O. (2005). Comparison of resampling schemes for particle filter-
ing. In Proc. Int. Symp. Image and Signal Process. Anal. (pp. 64–69). Piscataway, NJ:
IEEE.

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling
methods for Bayesian filtering. Stat. Comput., 10(3), 197–208.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12, 2121–2159.

Elliott, R. (1994). Exact adaptive filters for Markov chains observed in gaussian noise.
Automatica, 30(9), 1399–1408.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J. Geophys. Res:
Oceans, 99, 10143–10162.

Fitts, P. M. (1954). The information capacity of the human motor system in controlling
the amplitude of movement. J. Exp. Pyschol., 47(6), 381–391.

Flint, R. D., Lindberg, E. W., Jordan, L. R., Miller, L. E., & Slutzky, M. W. (2012).
Accurate decoding of reaching movements from field potentials in the absence
of spikes. J. Neural Eng., 9(4), 1–13.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/5/969/1865334/neco_a_01275.pdf by guest on 01 Septem
ber 2021



The Discriminative Kalman Filter 1013

Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian
learning. In Proceedings of the Int. Conf. Neural Netw. (3:1930–1935). Piscataway,
NJ: IEEE.

Gelb, A. (1974). Applied optimal estimation. Cambridge, MA: MIT Press.
Georgopoulos, A. P., Kettner, R. E., & Schwartz, A. B. (1988). Primate motor cortex

and free arm movements to visual targets in three-dimensional space. II. Coding
of the direction of movement by a neuronal population. J. Neurosci., 8(8), 2928–
2937.

Gerber, M., & Chopin, N. (2015). Sequential quasi Monte Carlo. J. Roy. Stat. Soc. Ser.
B (Stat. Methodol.), 77(3), 509–579.

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual
prediction with LSTM. Neural Comput., 12(10), 2451–2471.

Ghahramani, Z., & Hinton, G. E. (2000). Variational learning for switching state-
space models. Neural Comput., 12(4), 831–864.

Gilja, V., Pandarinath, C., Blabe, C. H., Nuyujukian, P., Simeral, J. D., Sarma, A. A.,
. . . Henderson, J. M. (2015). Clinical translation of a high-performance neural
prosthesis. Nat. Med., 21(10), 1142–1145.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the Int. Conf. Artif. Intell. Stats. (9:249–256).
PMLR.

Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to
nonlinear/non-gaussian Bayesian state estimation. IEE Proc. F—Radar and Signal
Process., 140(2), 107–113.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016).
LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst., 28(10), 1–
11.

Grewal, M. S., & Andrews, A. P. (2010). Applications of Kalman filtering in aerospace
1960 to the present. IEEE Control Syst. Mag., 30(3), 69–78.

Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Mar-
quardt algorithm. IEEE Trans. Neural Netw., 5(6), 989–993.

Hall, E. C. (1966). Case history of the Apollo guidance computer. Cambridge, MA: MIT
Press.

Handschin, J. (1970). Monte Carlo techniques for prediction and filtering of non-
linear stochastic processes. Automatica, 6(4), 555–563.

Handschin, J. E., & Mayne, D. Q. (1969). Monte Carlo techniques to estimate the con-
ditional expectation in multi-stage non-linear filtering. Int. J. Control, 9(5), 547–
559.

Hess, R., & Fern, A. (2009). Discriminatively trained particle filters for complex
multi-object tracking. In Proceedings of Comput. Vis. Pattern Recognit. (pp. 240–247).
Piscataways, NJ: IEEE.

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J.,
. . . Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a
neurally controlled robotic arm. Nature, 485(7398), 372–375.

Hochberg, L. R., & Donoghue, J. P. (2006). Sensors for brain-computer interfaces.
IEEE Eng. Med. Biol. Mag., 25(5), 32–38.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Comput.,
9(8), 1735–1780.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/5/969/1865334/neco_a_01275.pdf by guest on 01 Septem
ber 2021



1014 M. Burkhart et al.

Horn, R. A., & Johnson, C. R. (2013). Matrix analysis, 2nd ed. Cambridge: Cambridge
University Press.

Hosman, T., Vilela, M., Milstein, D., Kelemen, J. N., Brandman, D. M., Hochberg,
L. R., & Simeral, J. D. (2019). BCI decoder performance comparison of an LSTM
recurrent neural network and a Kalman filter in retrospective simulation. In Pro-
ceedings of the Int. IEEE EMBS Conf. Neural Eng. Piscataway, NJ: IEEE.

Hunt, B. R., Kostelich, E. J., & Szunyogh, I. (2007). Efficient data assimilation for spa-
tiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear
Phenom., 230(1), 112–126.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In F. Bach, & D. Blei (Eds.), Proceedings of
the Int. Conf. Mach. Learn., vol. 37 (pp. 448–456). PMLR.

Ito, K. (2000). Gaussian filter for nonlinear filtering problems. In Proceedings of the
IEEE Conf. Decis. Control, vol. 2. Piscataway, NJ: IEEE.

Ito, K., & Xiong, K. (2000). Gaussian filters for nonlinear filtering problems. IEEE
Trans. Autom. Control, 45, 910–927.

Jarosiewicz, B., Masse, N. Y., Bacher, D., Cash, S. S., Eskandar, E., Friehs, G.,
. . . Hochberg, L. R. (2013). Advantages of closed-loop calibration in intracorti-
cal brain-computer interfaces for people with tetraplegia. J. Neural Eng., 10(4),
1–17.

Jarosiewicz, B., Sarma, A. A., Bacher, D., Masse, N. Y., Simeral, J. D., Sorice, B.,
. . . Hochberg, L. R. (2015). Virtual typing by people with tetraplegia using a self-
calibrating intracortical brain-computer interface. Sci. Transl. Med., 7(313), 1–11.

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of re-
current network architectures. In F. Bach & D. Blei (Eds.), Proceedings of the Int.
Conf. Mach. Learn., vol. 37 (pp. 2342–2350).

Julier, S. J., & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear
systems. Proc. SPIE, 3068, 182–193.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J.
Basic Eng., 82(1), 35–45.

Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction
theory. J. Basic Eng., 83(1), 95–108.

Kim, S.-P., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., & Black, M. J. (2008). Neu-
ral control of computer cursor velocity by decoding motor cortical spiking activ-
ity in humans with tetraplegia. J. Neural Eng., 5(4), 455–476.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear
state space models. J. Comput. Graph. Stat., 5(1).

Koyama, S., Pérez-Bolde, L. C., Shalizi, C. R., & Kass, R. E. (2010). Approximate meth-
ods for state-space models. J. Am. Stat. Assoc., 105(489), 170–180.

Kushner, H. (1967). Approximations to optimal nonlinear filters. IEEE Trans. Autom.
Control, 12(5), 546–556.

Lemon, R. N. (2008). Descending pathways in motor control. Annu. Rev. Neurosci.,
31, 195–218.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in
least squares. Quart. Appl. Math., 2, 164–168.

Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Berlin: Springer.
MacKay, D. J. C. (1992). Bayesian interpolation. Neural Comput., 4(3), 415–447.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/5/969/1865334/neco_a_01275.pdf by guest on 01 Septem
ber 2021



The Discriminative Kalman Filter 1015

Majumdar, S. J., Bishop, C. H., Etherton, B. J., & Toth, Z. (2002). Adaptive sampling
with the ensemble transform Kalman filter. Part II: Field program implementa-
tion. Mon. Weather Rev., 130(5), 1356–1369.

Malik, W. Q., Hochberg, L. R., Donoghue, J. P., Hochberg, L. R., Donoghue, J. P.,
& Brown, E. N. (2015). Modulation depth estimation and variable selection in
state-space models for neural interfaces. IEEE Trans. Biomed. Eng., 62(2), 570–
581.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear pa-
rameters. J. Soc. Indust. Appl. Math., 11, 431–441.

Masse, N. Y., Jarosiewicz, B., Simeral, J. D., Bacher, D., Stavisky, S. D., Cash, S. S.,
. . . Donoghue, J. P. (2015). Non-causal spike filtering improves decoding of move-
ment intention for intracortical BCIs. J. Neurosci. Methods, 244, 94–103.

Maynard, E. M., Nordhausen, C. T., & Normann, R. A. (1997). The Utah intracorti-
cal electrode array: A recording structure for potential brain-computer interfaces.
Electroencephalogr. Clin. Neurophysiol., 102(3), 228–239.

Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. J. Am. Stat. Assoc.,
44(247), 335–341.

Minka, T. P. (2001a). Expectation propagation for approximate Bayesian inference.
Proceedings of the Conf. Uncertain. Artif. Intell. San Mateo, CA: Morgan Kaufmann.

Minka, T. P. (2001b). A family of algorithms for approximate Bayesian inference. PhD diss.,
MIT.

Nadaraya, E. A. (1964). On a regression estimate. Teor. Verojatnost. i Primenen., 9, 157–
159.

Nørgaard, M., Poulsen, N. K., & Ravn, O. (2000). New developments in state estima-
tion for nonlinear systems. Automatica, 36(11), 1627–1638.

Nuyujukian, P., Albites Sanabria, J., Saab, J., Pandarinath, C., Jarosiewicz, B., Blabe,
C. H., . . . Henderson, J. M. (2018). Cortical control of a tablet computer by people
with paralysis. PLOS One, 13(11).

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., . . . Yorke,
J. A. (2004). A local ensemble Kalman filter for atmospheric data assimilation.
Tellus A, 56(5), 415–428.

Pandarinath, C., Gilja, V., Blabe, C. H., Nuyujukian, P., Sarma, A. A., Sorice, B. L., . . .
Shenoy, K. V. (2015). Neural population dynamics in human motor cortex during
movements in people with ALS. eLife, 4.

Pandarinath, C., Nuyujukian, P., Blabe, C. H., Sorice, B. L., Saab, J., Willett, F., . . . Hen-
derson, J. M. (2017). High performance communication by people with paralysis
using an intracortical brain-computer interface. eLife, pp. 1–27.

Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C.,
. . . Sussillo, D. (2018). Inferring single-trial neural population dynamics using
sequential auto-encoders. Nat. Methods, 15(10), 805–815.

Paninski, L., Fellows, M. R., Hatsopoulos, N. G., & Donoghue, J. P. (2004). Spatiotem-
poral tuning of motor cortical neurons for hand position and velocity spatiotem-
poral tuning of motor cortical neurons for hand position and velocity. J. Clin. Neu-
rophysiol., 91, 515–532.

Pham, V., Bluche, T., Kermorvant, C., & Louradour, J. (2014). Dropout improves re-
current neural networks for handwriting recognition. In Proceedings of the Int.
Conf. Front. Handwriting Recognit. (pp. 285–290). Piscataway, NJ: IEEE.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/5/969/1865334/neco_a_01275.pdf by guest on 01 Septem
ber 2021



1016 M. Burkhart et al.

Pohlmeyer, E., Solla, S., Perreault, E. J., & Miller, L. E. (2007). Prediction of upper limb
muscle activity from motor cortical discharge during reaching. J. Neural Eng., 4,
369–379.

Quang, P. B., Musso, C., & Le Gland, F. (2015). The Kalman Laplace filter: A new de-
terministic algorithm for nonlinear Bayesian filtering. In Proceedings of the Intern.
Conf. Inf. Fusion (pp. 1566–1573). Piscataway, NJ: IEEE.

Quiñonero Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approx-
imate gaussian process regression. J. Mach. Learn. Res., 6, 1939–1959.

Rao, N. G., & Donoghue, J. P. (2014). Cue to action processing in motor cortex pop-
ulations. J. Neurophysiol., 111(2), 441–453.

Rasmussen, C. E., & Nickisch, H. (2010). Gaussian processes for machine learning
(GPML) toolbox. J. Mach. Learn. Res., 11, 3011–3015.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning.
Cambridge, MA: MIT Press.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Le, Q., & Kurakin, A. (2017).
Large-scale evolution of image classifiers. In Proceedings of the Int. Conf. Mach.
Learn. PMLR.

Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge: Cambridge University
Press.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Netw., 61, 85–117.

Schmidt, S. F., Weinberg, J. D., & Lukesh, J. S. (1970). Application of Kalman filtering
to the C-5 guidance and control system. In C. T. Leondes (Ed.), Theory and applica-
tions of Kalman filtering. Neuilly sur Seine, NATO, Advisory Group for Aerospace
Research and Development.

Schwartz, A. B. (1994). Direct cortical representation of drawing. Science, 265(5171),
540–542.

Shumway, R. H., & Stoffer, D. S. (1991). Dynamic linear models with switching. J.
Am. Stat. Assoc., 86(415), 763–769.

Simeral, J. D., Kim, S.-P., Black, M. J., Donoghue, J. P., & Hochberg, L. R. (2011). Neural
control of cursor trajectory and click by a human with tetraplegia 1000 days after
implant of an intracortical microelectrode array. J. Neural Eng., 8(2), 1–21.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res., 15, 1929–1958.

Stevenson, I. H., & Kording, K. P. (2011). How advances in neural recording affect
data analysis. Nat. Neurosci., 14(2), 139–142.

Sugiyama, M., Suzuki, T., & Kanamori, T. (2012). Density ratio estimation in machine
learning. Cambridge: Cambridge University Press.

Sussillo, D., Nuyujukian, P., Fan, J. M., Kao, J. C., Stavisky, S. D., Ryu, S., & Shenoy,
K. (2012). A recurrent neural network for closed-loop intracortical brain–machine
interface decoders. J. Neural Eng., 9(2), 1–21.

Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I., & Shenoy, K. V. (2016). Making
brain–machine interfaces robust to future neural variability. Nat. Commun., 7, 1–
12.

van der Merwe, R. (2004). Sigma-point Kalman filters for probabilistic inference in dy-
namic state-space models. PhD diss., Oregon Health and Science University.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/5/969/1865334/neco_a_01275.pdf by guest on 01 Septem
ber 2021



The Discriminative Kalman Filter 1017

van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge: Cambridge University
Press.

Vargas-Irwin, C. E., Brandman, D. M., Zimmermann, J. B., Donoghue, J. P., & Black,
M. J. (2015). Spike train SIMilarity space (SSIMS): A framework for single neuron
and ensemble data analysis. Neural Comput., 27(1), 1–31.

Vargas-Irwin, C. E., Shakhnarovich, G., Yadollahpour, P., Mislow, J. M. K., Black, M.
J., & Donoghue, J. P. (2010). Decoding complete reach and grasp actions from local
primary motor cortex populations. J. Neurosci., 30(29), 9659–9669.

Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cor-
tical control of a prosthetic arm for self-feeding. Nature, 453(7198), 1098–101.

Walker, B., & Kording, K. (2013). The database for reaching experiments and models.
PLOS One, 8(11).

Wan, E. A., & van der Merwe, R. (2000). The unscented Kalman filter for nonlinear
estimation. In Proceedings of the Adaptive Syst. for Signal Process., Commun., and
Control Symp. (pp. 153–158). Washington, DC: Society for Neuroscience.

Watson, G. S. (1964). Smooth regression analysis. Sankhyā Ser. A, 26, 359–372.
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