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CAUSAL INFERENCE VIA
NEUROEVOLUTIONARY SELECTION

BACKGROUND

il

[0001] Estimating the causal eflect of treatments on a
desired outcome 1s one of the main components of prescrip-
tive analysis 1n the sciences and social sciences. Causal
ellect estimation has applications across multiple domains as
it can greatly assist in decision making processes. For
instance, application in the medical domain includes esti-
mating the effect of a treatment, such as taking preventive-
vaccines, 1mmunity-boosters, or food-supplements, on a
desired clinical outcome, such as the prevention of a disease.
With massive growth in online technologies, some causal
cllect analyses have become part of the decision making
process 1n the domain of online businesses. For example, the
cllect of a new page layout on a click through rate could be
taken 1nto account when designing a web page, or the effect
of a new ranking algorithm on engagement could be esti-
mated when deciding whether to implement the ranking
algorithm.

SUMMARY

[0002] The technology described herein 1s directed
towards enhanced methods and systems for estimating het-
erogeneous causal eflects. In at least one embodiment, data
(e.g., training data) 1s recerved and/or accessed. The data can
encode information pertaining to a set of observations (e.g.,
experimental observations). Each observation can be asso-
ciated with a subject and/or object (e.g., a user, a computing
device, an application, or the like) and whether or not a
treatment (or intervention) was provided to the subject/
object. The data pertaining to a particular observation can
include a feature set that encodes multiple features associ-
ated with the object/subject, a treatment, and an outcome for
the subject/object. More particularly, the data can represent

a vector or 1-tensor (e.g., XER %) for each observation that
encodes the feature set for the observation. The vector can
be a feature embedding 1n a first vector space (e.g., a first
latent vector space). The data can also represent a binary
state (e.g., W=0 or 1) for each observation that encodes
whether or not the observation’s object/subject received the

treatment, as well as a real (or rational) value (e.g., YER)
encoding an outcome associated with the subject/object.

[0003] The data can be employed to train a first generation
(c.g., an 1nitial or an intermediate generation) of models
(e.g., machine learning (ML )) models. Such ML models can
include but are not limited to models implementable by one
or more neural network-based architectures. The training
objective of the traiming can include learning an injective
mapping (e.g., a transformation ®(X)) from the first vector
space (e.g., the vector space that 1s associated with the
feature sets) to a second vector space (e.g., a second latent
space). The training objective can bias the learning such that
the mapping conserves some information (e.g., information
associated with a feature set embedded) 1n the first vector
space, wherein the conserved information 1s predictive of the
outcome associated with the feature set. Thus, each model of
a generation of models can implement a transformation of a
feature set embedding from the first vector space to the
second vector space. A given model’s transformation can be
implemented 1n an mtermediate layer of a neural network-
based architecture that at least partially instantiates the
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model. As such, the transformation can at least be partially
encoded 1n a 2-tensor (e.g., a matrix). The training objective
biases the transformation such that the transformed vector
representing a feature set for a subject/object 1s predictive of
the outcome associated with the subject/object.

[0004] A new (or subsequent) generation of models can be
generated via a genetic algorithm. The genetic algorithm can
generate multiple generations of models to produce long
lineages of the 1nitial generation of models. The models for
cach generation 1n a lineage (except for the mitial genera-
tion) are generated by mixing, blending, and/or (e.g., deter-
ministically and/or stochastically) mutating characteristics
of pairs of models from a previous generation. That 1s, pairs
of models (e.g., pairs of parent models) are “genetically”
combined to reproduce as one or more child models. The
child models of a previous generation comprise the models
of the subsequent generation of models. A subset of a
generation’s child models are selected (via a fitness criteria)
as suitable parents to produce the next generation of models.
That 1s, the genetic algorithm (1mplementing the fitness
criteria) can select a subset of models at each generation.
The fitness criteria of the genetic algorithm can be at least
partially aligned with the training objective used for training
the models. Thus, the fitness criteria can be biased towards
selecting potential parent models that are at least partially
cllective 1n conserving the information from the first vector
space that 1s predictive of the outcome, based on the feature
set of the associated subject/object. As indicated above, the
conserving ol such mformation can be implemented 1n an
intermediate layer of a neural network-based model and/or
a linear transformation 2-tensor.

[0005] After at least partially generating a linecage of
models via evolutionary mechamisms (e.g., as implemented
by the genetic algorithm), the fitness criteria can be
employed to select one or more sufliciently-fit models of the
lineage. A sufliciently-fit model can be employed to generate
transformed data (e.g., transformed training data) based on
the received data. The transformed data can include a
transformed feature set, as well as the corresponding treat-
ment and outcome for each observation. As noted above, the
transformed feature sets can be encoded 1n a vector embed-
ding (e.g., a representation) 1n the second vector space.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 illustrates an enhanced treatment analysis
system 1mplementing various embodiments presented
herein.

[0007] FIG. 2A shows a schematic of a machine learning
model trained to predict outcome using observational data,
in accordance with various embodiments.

[0008] FIG. 2B shows a schematic of the machine learning
model of FIG. 2A with a second machine learning model for
assessing an ability to predict treatment, 1n accordance with
various embodiments.

[0009] FIG. 3 schematically shows successive generations
from genetic blending and selection, as implemented by a
genetic algorithm, 1n accordance with various embodiments.
[0010] FIG. 4 illustrates pseudo-code for a process for
evolving a transformation that enables an estimation of a
heterogencous causal effect, 1n accordance with various
embodiments.

[0011] FIG. 5 illustrates one embodiment of a method for
determining a heterogeneous causal effect, which 1s consis-
tent with various embodiments presented herein.
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[0012] FIG. 6 1llustrates another embodiment of a method
for determining a heterogeneous causal eflect, which 1is
consistent with various embodiments presented herein.

[0013] FIG. 7 1s ablock diagram of an example computing
device 1 which embodiments of the present disclosure can
be employed.

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

L1

[0014] The technology described herein generally relates
to causal estimation using neuroevolutionary selection to
generate causal models that provide improved estimation
over conventional approaches. At a high level, neuroevolu-
tionary selection 1s employed to evolve features for training,
causal models with improved performance.

[0015] Causal estimation involves estimating an effect of
a treatment on an outcome for a given subject. Causal
models, such as meta-learners, causal forests, and the like,
are olten used for estimating causal eflect. Given observa-
tional data, a causal model can be trained to estimate causal

eflect, such as a conditional average treatment eflect
(CATE).

[0016] The observational data often used to train causal
models 1s based on a number of observations, with each
observation including: (1) a feature set with information
regarding features of a subject (e.g., a patient, a user, a web
page, a data transaction, etc.); (2) a treatment given to the
subject; and (3) an observed outcome. For instance, 1n the
medical domain, an observation could include features of a
patient (e.g., age, gender, weight, etc.), whether the patient
was given a vaccine (1.e., the treatment), and whether the
patient contracted a disease (1.e., the observed outcome).
Once trained on observational data, a causal model can be
used to predict an expected individualized outcome of
assigning a treatment to a novel subject. For instance, given
a new patient with certain features, a causal model can be
used to predict whether the patient will contract a disease 1
given a vaccine.

[0017] There are a number of shortcomings of conven-
tional causal modeling that impact the accuracy of estimat-
ing causal effect. One 1nherent limitation 1s the unavailabil-
ity of counterfactual observational data. That 1s, while an
observation provides an observed outcome for the treatment
given to a subject, no observational data 1s available for what
outcome would have occurred 1f the treatment were not
given to that subject. For istance, while it 1s known that a
patient did not contract a disease after receiving a vaccine,
it 1s unknown what the outcome would have been if the
patient was not given the vaccine.

[0018] Another shortcoming of existing approaches
relates to the ability to model causal relationships between
features and outcomes as opposed to correlational relation-
ships. This can be impacted, for instance, by lack of proper
experimental controls when collecting observational data.
For example, during clinical trials for a treatment under
investigation, the treatment and control groups can have
been mnadvertently selected from (at least slightly) diflerent
populations. Such 1mnadequate controls can significantly bias
the causal effect estimate. As a result, the estimation of the
causal eflect can be more correlational and less causal 1n
nature. This reflects that features of subjects 1n observational
data contain information for predicting both outcome and
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treatment, but for the purposes of estimating causal eflect,
information in features for predicting the treatment 1s ellec-
tively noise.

[0019] The technology described herein solves these prob-
lems by providing an approach for estimating causal ellect
that more accurately models causal relationships between
features and outcomes. Instead of training a causal model
using the original feature sets 1n observational data, aspects
of the technology described herein train a causal model
using transformed representations of those features (referred
to heremn as transformed feature sets), 1n which the trans-
formed representations are encodings that retain information
predictive of outcome while minimizing information pre-
dictive of treatment.

[0020] In accordance with some aspects of the technology
described herein, a neuroevolutionary approach 1s used to
learn transformed feature sets from observational data such
that the transformed feature sets satisty two fitness objec-
tives: (1) the transformed feature sets are as useful at
predicting outcome as the original feature sets; and (2) the
transiformed feature sets are less useful at predicting treat-
ment relative to other candidate transformed features sets.
The neuroevolutionary approach includes generating suc-
cessive generations of machine learning (ML) models to
evolve a transformation for generating transformed features
sets from the observational data that satisty the two fitness
objectives.

[0021] At each generation, a cohort of ML models 1is
trained using the observational data to predict an outcome
given a feature set. Each ML model includes a transforma-
tion for mapping a feature set 1n a first vector space to a
transformed feature set 1n a second vector space at an
intermediate layer of the ML model. Because each ML
model 1s trained to predict outcome given a feature set, the
transformed feature set at the intermediate layer of the ML
model 1s as usetul at predicting outcome as the original
feature set, thereby satisiying the first fitness objective
indicated above.

[0022] FEach ML model 1n a generation 1s evaluated with
a itness criteria that assesses the model’s ability to provide
a transformed feature set that 1s less predictive of treatment.
In accordance with some aspects, each ML model 1s paired
with a second ML model for assessing the usefulness of the
transformed feature set at predicting treatment. A subset of
the ML models from a generation are selected based on the
fitness criteria and used to generate the ML models for the

subsequent generation by forming a cross between pairs of
selected ML models.

[0023] After a transformation has been evolved and
selected for, the transtformation can be used to transform the
feature sets of the observational data to the second vector
space to provide transformed feature sets. A causal model
(e.g., meta-learner, causal forest, etc.) can be trained via
transformed observational data that includes for each obser-
vation: the transformed feature set, the observed treatment,
and the observed outcome. The causal model can be used to
determine a heterogeneous causal etfect (associated with the
treatment) for a novel subject (e.g., a subject that was not in
the set of subjects for the observational data). A decision
whether to give the treatment to the novel subject can be
based on the estimated heterogeneous eflect for the novel
subject.

[0024] The technology described herein provides a num-
ber of advantages over conventional approaches for estimat-
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ing causal effect. The embodiments discussed herein provide
increased performance for estimating such causal eflects,
which do not sufler from the biases associated with popu-
lation-level differences between the treatment and control
groups that can be included in the observational data. In
particular, because at least a portion of the information
associated with a prediction of the treatment assignment 1s
removed 1n the transformation from the first vector space to
the second vector space, the estimate of the causal effect for
the novel subject 1s not biased based on population-level
differences between treatment and control groups as 1n
conventional methods. Thus, the estimation of the hetero-
geneous ellect provided by embodiments described herein 1s
more accurate than that associated with conventional meth-
ods. While some conventional approaches apply a transior-
mation to the subjects’ features 1n the observational data, the
information that 1s conserved in such conventional methods
1s different. More specifically, such conventional methods
employ a transformation that results in embedded features
that are invariant to treatment prediction. Consequently,
these conventional methods conserve some of the informa-
tion that 1s useful for predicting the outcome, but tend to
discard all (or most) of the information (from the first vector
space) that 1s relevant for predicting treatment assignment
(as opposed to conserving the information that 1s helpful 1n
predicting both the outcome and the treatment). The evolved
transformation of the technology described herein, 1n con-
trast, conserves the mformation that 1s helpful in predicting
both the outcome and the treatment while minimizing infor-
mation that 1s predictive of treatment alone. As a result, the
heterogeneous eflect estimated provided by embodiments
described herein 1s more accurate than that associated with
such conventional methods. Accordingly, the embodiments
enable a better decision process as to whether to administer
a treatment on a particular subject than conventional meth-
ods.

Example Operating Environment for Estimating Causal
Effect

[0025] FIG. 1 illustrates an enhanced treatment analysis
system 100 implementing various embodiments presented
herein. Treatment analysis system 100 1s enabled to employ
a causal graph 140 and corresponding observational data
130 to determine an eflect of a treatment on an outcome,
such as but not limited to the conditional average treatment
cllect (CATE). Treatment analysis system 100 can include at
least a client computing device 102 and a server computing
device 104, in communication via a communication network
110. The client computing device 102 can provide observa-
tional data 130 to the server computing device 104, via the
communication network 110. The server computing device
104 implements a treatment analyzer 120. The treatment
analyzer 120 1s enabled to determine a causal eflect (e.g., an
estimation of the CATE) for a treatment on an outcome,
based on the observational data 130 and the causal graph
140. Although a client/server architecture 1s shown i FIG.
1, the embodiments are not limited to such architectures. For
example, client computing device 102 can implement the
treatment analyzer 120, obviating the offloading of tasks to
server devices.

[0026] Communication network 110 can be a general or
specific communication network that 1s directly and/or indi-
rectly communicatively coupled to client computing device
102 and server computing device 104. Communication
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network 110 can be any communication network, including
virtually any wired and/or wireless communication tech-
nologies, wired and/or wireless communication protocols,
and the like. Communication network 110 can be virtually
any communication network that communicatively couples
a plurality of computing devices and storage devices 1n such
a way as to allow computing devices to exchange informa-
tion via communication network 110.

[0027] In some aspects, observational data 130 1s concep-
tualized (or structured) as a 2D data array (e.g., arranged 1n
a table). Each row 1n the table corresponds to an observation
for a subject (e.g., a user, a patient, data transaction, or the
like). The data for the observation corresponding to the i
subject 1s conceptualized (or structured) as a 3-tuple: (X,

W.. Y,), where XER9 is a first data object that denotes a
feature set (e.g., a feature vector or subject encoding) for the
i”” subject. WEJ0,1} is a second data object that denotes a
boolean treatment (i.e., intervention) assignment for the i”

subject. YER is a third data object that denotes a scalar
outcome for the i’ subject. As an illustrative example, the
observational data for the i’ subject could include: a feature
set X encoding information regarding a patient, such as age,
gender, weight, etc.; a treatment assignment W indicating
whether the patient received a vaccine; and an outcome Y
indicating whether the patient contracted a disease. The
3-tuples (e.g., (X, W, Y ) for1=1, ..., N (where N 1s a
positive integer that denotes the number of observational
subjects) can be considered as independent and 1dentically
distributed (1.1.d.) samples that are sampled from a distribu-
tion P. The observational data 1s assumed to be subject to the
following causal graph:

(1)

/\

[0028] The causal relationships between the variables (X,
W, Y) are modeled via the causal graph 140. For the scalar
outcomes, the tollowing notation 1s adopted: Y ,(0) denotes
the potential outcome 1f the treatment W, were set to 0, and
Y (1) denotes the potential outcome 1f the treatment W, were

set to 1. In some aspects, the conditional average treatment
cllect (CATE) 1s calculated as:

t(x)= L1 ¥(1)= ¥(0) 1 X=x]. (2)

[0029] It can be assumed that the treatment assignment 1s
an unconfounded vanable, e.g.:

{Y:(0),Y;(1) } LWLX,,
for all i, and random 1n the sense that
e<P(W=11X=x,)<1-€

for all i, for a particular €>0, and for all x, ER ¢ in the support
of X,. These assumptions are jointly known as strong
ignorability and provide sufliciency for an estimate of the
CATE from the observational data 130. That 1s, under these
assumptions, causal models (e.g., meta-learners, causal for-
est, etc.) can be employed to generate and estimate the
CATE based on observational data 130. The causal models
enable a calculation of the CATE {for a subject not included
in the observational data 130 (e.g., a new and/or novel
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subject), predicting an expected individualized outcome of

assigning a treatment to the novel subject.

[0030] Using the observational data 130 as an 1input,
treatment analyzer 120 generates a learned transformation

(i.e., function) ®:R4—=R™ When applied to the original
observational data 130 (X, W, Y,), the transformation
generates transformed observational data (e. g., @(X.), W,
Y ) such that the estimated causal effect from a causal model
trained from the transformed observational data is more
accurate than the estimated causal eflect from a causal model
trained on the original observational data 130. In particular,
treatment analyzer 120 learns (via a genetic algorithm and
the observational data 130) a transformation & that, when
applied to the feature set X for each observation, generates
a transformed feature set ®(X) for each observation such
that the following two fitness objectives are satisfied:

[0031] 1. The transformed feature set ®(X) 1s as usetul

as the original feature set X for estimating (or predict-
ing) outcome Y, and

[0032] 2. among a set of representations that satisfies
(1), the transformed feature set ®(X) 1s less usetul for
estimating (or predicting) treatment W.

[0033] Going forward, the fitness objective indicating that
the transformed feature set ®(X) 1s as useful as the original
feature set X for predicting Y can be referred to as fitness
objective (1). Sumilarly, the fitness objective indicating that
the transformed feature set ®(X) 1s non-predictive (less
predictive) of treatment W can be referred to as fitness
objective (2). To such ends, treatment analyzer 120 evolves
a transformation ® that generates a transformed feature set
®(X) that conserves (at least some) mnformation encoded 1n
the original feature set X that 1s predictive of the outcome Y,
but 1s non-conservative of (at least some of) other informa-
tion encoded 1 X that 1s predictive of the treatment assign-
ment W. The transformation ® i1s learned from the input
observational data 130 and a genetic algorithm. More spe-
cifically, the transformation ® can be implemented by a
learned intermediate layer 1n a neural network that estimates
a Tunctional relationship of outcome Y given a feature set X.
Even more specifically, a genetic algorithm can be employed
to evolve transformations that increase the utility of the
transiformed feature set ®(X) 1n predicting outcome Y, while
decreasing the utility of the transtformed feature set ©(X) 1n
predicting treatment W. That 1s, once sufliciently evolved,

the transformation ® simultancously satisfies fitness objec-
tives (1) and (2).

[0034] As shown in FIG. 1, treatment analyzer 120
includes a neural network (NN) trainer 122, an evolution
module 124, and a causal model module 126. The transtfor-
mation ® can be implemented 1n NN. NN trainer 122 1s
generally responsible for employing random generators and
one or more supervised learning methods to seed and train
candidate NNs for the transformation ®. Evolution module
124 1s generally responsible for employing a genetic algo-
rithm on trained sets of candidate NNs (e.g., that implement
candidate @) to evolve and select a transformation ® to
generate transformed feature sets from the original feature
sets 1n the observational data 130. The causal model module
126 trains one or more causal models (e.g., meta-learners,
causal forest, etc.) with the transformed feature sets ®(X),
and employs the causal model(s) to estimate the causal effect
of a treatment on an outcome for a subject not included 1n
the observational data 130 (e.g., a novel subject).
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[0035] The one or more causal models employed by the
causal model module 126 can include, but are not otherwise
limited to S-learner methods, T-learner methods, X-learner
methods, and R-learner methods. Each of these meta-learn-
ers can be employed to estimate the causal eflect of a
treatment for a novel subject.

[0036] As noted above, the standard assumptions of
unconfoundedness and the random treatment assignment
can be assumed. That 1s, strong 1gnorability can be assumed
for the observational data 130. Given 1.1.d. samples from a
distribution P (e.g., observational data 130) respecting
causal graph 140, and the assumption of strong ignorability,
any ol the meta-learner methods or other methods 1mple-
mented by causal model module 126 can leverage an arbi-
trary regression iframework to estimate the CATE for a
subject.

[0037] In some aspects, an S-learner (e.g., a single-
learner) method employs a standard supervised learner to

estimate w(x, w)=L[YIX=x, W=w] from observation data
and then estimates the CATE as follows:

To(x)=1(x, 1)—(x,0)

where the standard hat notation 1s used to denote estimated
versions of underlying functions.

[0038] A T-learner (e.g., a two-learner) method estimates
u,(X)=LE[Y(1)IX=x] from observed challenger data {(X.,

YI.)}WI_: . and p,(x)= E[Y(0)X=x] from observation data {(X_,
YI.)}WI_:O. The T-learner then estimates the CATE as follows:

T 7)) =1 (%) Lo (%).

[0039] An X-learner method estimates 1, and p, as in a
T-learner method. The X-learner predicts the contrapositive
outcome for each training point. The X-learner estimates

T, (X)= I [f)z'l X=x] on (X, f)z'l)}wlea where f)il:Yi_MD(Xi)
and 7,(X,)=E[D1X=x] on {(X,, D)}, -, where D,
(X,)-Y,. The X-learner estimates the CATE as follows:

T ()= ()T () +(1-g (%))T, ()

where g:R9—[0,1] is a weight function. A treatment pro-
pensity function (e.g., see equation (3) in conjunction with
the discussion pertaining to an R-learner) can work well for
g, as do the constant functions 1 and 0. In at least one
embodiment, g(x)='2 1s employed.

[0040] In at least some X-learner methods, T 1s directly
estimated via:

{(X, Yirto(X)) hom W (Kt (X)) - Y 1y o

[0041] In some X-learner methods, T 1s estimated using
w(x, w) from an S-learner method as follows:

{(X;, Y pG00 - U{ (GG, D-Y) b, —o.

Such X-learner methods can obviate estimating or {ixing g.

[0042] Some R-learner methods employ a graphical
model. In such methods, a treatment propensity (sometimes
referred to as a propensity score) can be defined as follows:

e(x)=P(W=1X=x), (3)

and a conditional mean outcome 1s computed as:

m(x)= L yxv=x]. (4)

[0043] R-learner methods leverage Robinson’s decompo-
sition which leads to a reformulation of the CATE function

as the solution to the optimization problem:
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7(-) = argmin{Eqr . y)-p|I(Y = m()) = (W — e(X)r(OF || (5)

in terms of a treatment propensity and a conditional mean
outcome. In some aspects, a regularized, empirical version
of (5) 1s minimized (or at least decreased) via a two-step
process where: (1) cross-validated estimates h and € are
generated for m and e, respectively, and (2) the empirical
loss 1s evaluated using folds of the data not used for
estimating m and €, and minmimized. The structure of the loss
function can eliminate correlations between m and e, while
allowing one to separately specify the form of r through a
choice of optimization method. In some embodiments, a
causal forest approach (as implemented with generalized
random forests) can be employed as an R-learner using the
default options, including honest splitting.

[0044] As discussed further below, evolution module 124
implements an algorithm (e.g., a genetic or evolutionary
algorithm) to evolve (and select a fittest) ®(X) transforma-
tion (or function), based on a fitness criteria that satisfies the
fitness objective (1) and fitness objective (2) discussed
above. In general, genetic algorithms are a class of algo-
rithms that include a nature-inspired approach to optimiza-
tion. Genetic algorithms iteratively generate successive gen-
erations of candidate solutions. New generations are formed
by selecting members from each generation of candidate
solutions, based on a fitness criteria that optimizes one or
more fitness objectives, from the previous generation of
candidate solutions.

[0045] In some aspects of the technology described herein,
each candidate solution of a generation of candidate solu-
tions 1s a ML model that includes a transformation (e.g.,
P$(X)) that takes a feature set from a first vector space and
generates a transformed feature set, which 1s a representation
of the feature set 1n a second vector space (e.g., an embed-
ding space of the ML model). Thus, each generation of
candidate solutions can be a generation of ML models. In
some aspects, each ML model can be generated by training
a neural network and implemented on the neural network.
The term cohort 1s also used herein to refer to a generation
of ML models. Thus, a cohort can include a generation (or
set) of ML models. Because a genetic algorithm 1teratively
generates successive generations of ML models, the genetic
algorithm can be said to generate an (ordered) set of gen-
erations of ML models (or an (ordered) set of cohorts). A set
of generations of ML models can include one or more
lineages of ML models that were evolved from the initial (or
seed) generation via the genetic algorithm.

[0046] Analogous to reproduction’s (somewhat) random
mixing, blending, combining, and/or (deterministically and/
or stochastically) mutating of genomes from pairs of par-
ents, genetic algorithms perform cross-over and/or mutation
operations (on elements of the evolving function) on pairs of
parent candidate solutions (e.g., a pair of parent models)
from the previous generation to produce new offspring (or
child) candidates for the current generation of models.
Genetic algorithms encompass extensions and generaliza-
fions to algorithms, such as but not limited to memetic
algorithms that perform local refinements. Some genetic
algorithms act on programs represented as trees. Other
genetic algorithms operate on more general representations
of functions or other operational units. The unit of selection
that the genetic algorithms implemented i1n the various
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embodiments operate on 1s a transformation from one vector
space to another vector space (e.g., ©(X) which 1s repre-
sentable as a 2-tensor operator). As noted throughout, such
transformations (e.g., representable as 2-tensors) between
vector spaces can be implemented via one or more layers
within a NN. Because the unit that the evolution acts upon
1s one or more layers within a NN, the term neuroevolution
refers to the evolution of such transtormations.

[0047] The form and/or structure of a transformation P:

R4 5R™ is now discussed. As noted above, the evolution
and selection of the feature mapping 1s generated by a

genetic algorithm (as 1mplemented by evolution module
124). The transformation @ transforms a feature set X,

which 1s a first representation of features of a subject 1n a
first d-dimensional vector space, into a transformed feature
set P(X), which 1s a second (or latent) representation of the
features (in a second m-dimensional vector space). The
transformation @ can be implemented via an intermediate
layer of a neural network (which itself 1s trained using
gradient-based, backpropagation methods, implemented via

NN trainer 122). A set of possible transformations from R

R™ can be employed as a prediction generator from feature
set X to outcome Y. Elements of such a generalized set of
transformations, which are implementable via a neural net-

work, can be denoted by f. That is, neural network f,:R“—

R provides a transformation from R< to R™ and can be
generalized as:

felx)=My-a(M,-x+b)+b, (6)

where M, R4 M,e R > are real-valued matrices (e.g.,
with elements or components referred to as weights), b, &

R™ and b,e R' are column vectors (e.g., with elements or
components referred to as biases), and a 1s a nonlinear
activation function applied component-wise. The elements
and/or components of the matrices and vectors can be
collectively referred to as the parameters of f. @=(M,, M,,
b,, b,)} can be used to collectively refer to the parameters for

f. Note that f:R4>5R"™ can be implemented via a neural
network, with a single hidden layer. Also note that { 1s an
operator that maps a real d-dimensional 1-tensor onto a
real-valued O-tensor. Further note that a provides a non-
linear element 1n f, such that {, as a non-linear operator can

be a universal function approximator from the domain R < to

the codomain R™. Supervised learning can be employed to
determine the values of the parameters of f to approximate

any function from the domain R the codomain R™. In the
embodiments, the network (represented by equation (6)) 1s
trained (e.g., as implemented by NN trainer 122) in order to
best predict outcome Y from feature set X, via the objective
function:

®, = argngn[ElY — fa(X)?. (7)

[0048] That 1s, equation (7) 1s a first objective function that
NN trainer 122 employs to train ML models implemented by
NNs. Given parameters ® for the network layers that are

symbolically denoted in equation (6), ®:R4—R™ denotes
the mapping generated (as output) of the hidden layer of the
network:
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Pox)=alM -x+b ) (8)

[0049] In some embodiments, candidate feature mappings
can be constrained to this form. For parameters ® in the
parameter-space neighborhood of the optimum of equation
(7), the transformed feature set @,(X) can be approximately
as useful as the original feature set X for learning a func-
tional relationship with outcome Y, satisfying fitness objec-
tive (1). However, for some values of ®, the transformed
feature set P,(X) can still carry information useful for
predicting treatment W, thus not satisfying fitness objective

(2). Accordingly, an additional network gT?@:Rd%[O,l] 1S
considered for selecting candidate ML models for satisfying

object (2). This additional network gy,  can be symbolically
notated as:

gy o 0)=0(M - a(M5 Pg(x)+b3)+D,) (9)

where M,e R and M, R ™19 are weights, b.e R'? and

b,c R are biases, and 6(x)=(1+exp(-x))~! denotes the sig-
moidal activation function. In this case, W=(M;, M, b;, b,)
denotes another set of tunable parameters for the network (or
function approximator) g. As a umversal function approxi-
mator, g can be employed to predict (or estimate) treatment
W from transformed feature set ®,(x). An objective func-
tion for the prediction of treatment W, as a function of the
parameter set &, can be defined as:

10<rm2

p(®) = minE| W - gye (X)I. (10)

Equation (10) can be employed to express a preference for
transformed feature sets P, (X) that are less useful for
predicting treatment W.

[0050] FIG. 2A 1s a schematic showing an example ML
model 202 trained, for instance, via the NN module 122
using the observational data 130 of FIG. 1. In this example,
the ML model 202 1s a NN trained to predict an outcome Y
given a lfeature set X.. As shown i FIG. 2A, a first
transformation 220 (e.g., ®) transforms a first vector 210
(1.e, feature set X,) 1n a first d-dimensional vector space to
a second vector 230 (1.e., transformed feature set #(X),) in
a second m-dimensional vector space. The first transforma-
tion 220 corresponds with the transformation @, as refer-
enced 1n equation (8). A second transformation 240 maps the
second m-dimensional vector space 230 onto a predicted
outcome 250 (1.e., outcome Y ). The combination of the first
transformation 220 and the second transformation 240 cor-
responds with neural network to fg(x), as referenced by
equation (6).

[0051] Aspects of the technology described herein train a
cohort of ML models, such as the ML model 202, at each
generation. Because each of the ML models 1s trained to
predict outcome Y given a feature set X, each ML model
includes a transtormed feature set P(X), (e.g., the second
vector 230) that 1s as useful as the original feature set X,
(e.g., the first vector 210) for predicting outcome Y, thereby
supporting fitness objective (1). Each of the ML models in
a cohort 1s evaluated to determine which ML models provide
a transtformed feature set P(X); that is less usetul at predict-
ing treatment. In this way, ML models with a transformed
feature set ©(X) that 1s non-predictive (less predictive) of
freatment W can be selected for generating subsequent
generations, thereby supporting fitness objective (2). In
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accordance with some configurations, each ML model 1s
paired with a second ML model for assessing the usefulness
of the transformed feature set (X)), at predicting treatment.

[0052] FIG. 2B shows a schematic of the ML model 202

for predicting outcome (transformations 220 and 240 shown
with solid lines) with a second ML model 204 for predicting
treatment (transformations 260 and 280 shown with dashed
lines). In this example, the second ML model 204 1s a NN
trained on top of the NN of the ML model 202 to predict
treatment. As shown 1n FIG. 2B, a third transformation 260
maps the second vector 230 (1.e., transformed feature set
®(X);) in the second m-dimensional vector space to a third
vector 270 1n a third vector space, which 1s then mapped via
a fourth transformation 280 to a treatment 290. The com-
bination of the first transformation 220 (which 1s fixed from
training the first ML model 202), third transformation 260,
and fourth transformation 280 corresponds with neural net-
work gy o(X), as referenced by equation (9).

[0053] A generalized process to generate and evolve a
population of candidate transformations P, 1S now
described. Exemplary (and non-limiting) pseudo-code that
implements this process 1s 1llustrated in psendo-code 400 of
FIG. 4. In addition to FIG. 4, this process 1s described 1n
conjunction with FIG. 3, which schematically illustrates a
genetic algorithm 300 implemented by the various embodi-
ments. More specifically, FIG. 3 schematically shows the
genefic blending and selection, as implemented by a genetic
algorithm 300, 1n accordance with various embodiments.
Note that the population of candidate instances of the
transformation Pg 1s evolved to generate a parameter set ®.,
such that the transformed feature set @g.(X) 1s nearly as
useful for predicting outcome Y as the original feature set X
1s (e.g., fitness objective (1)) and, among such representa-
tions, the transformed feature set P ..(X) 1s less useful for
predicting treatment W (e.g., fitness objective (2)).

[0054] As noted above, FIG. 4 illustrates pseudo-code 400
for a process for evolving a transformation that enables an
estimation of a heterogeneous causal effect, in accordance
with the various embodiments. A treatment analyzer (e.g.,
treatment analyzer 120 of FIG. 1) can implement the process
being discussed and/or one or more portions of pseudo-code
400. The “data” line of pseudo-code 400 shows the inputs to
the process. The inputs include observational data (e.g.,
observation data 130 of FIG. 1). The observational data 1s
assumed to be independent and 1dentically distributed, with
respect to the distribution P. The observational data 1s further
assumed to respect a causal graph (e.g., the causal graph 140
from FIG. 1). In the discussed process, ¢ 1s a posifive integer
indicating the number of models included 1n each generation

of a set of generations of models, t is a positive integer that
indicates the number of parent transformations in each

generation of models (e.g., ¥ <c), g is a positive integer
indicating the number of generations of models, and d 1s a
positive number 1ndicating the dimensionality of a first
vector space (e.g., the vector space that embeds subject
representations X), and m 1s a positive integer indicating the
dimensionality of a second vector space (e.g., the vector
space that embeds the transformed subject representations
D(X)).

[0055] The result line of pseudo-code 400 shows the
output of the process. Namely, the output includes the

transformation ®:R4—-5R” The outputted transformation
transforms the subject features into a second representation
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such that causal models (e.g., meta-learners, causal forest,
etc.) learned using the transformed training data {(P)(X)),
W., Y ) }._perform better than those learned on the original
dataset. That 1s, the transformed data satisfies each of fitness
objective (1) and fitness objective (2).

[0056] As noted 1n the data line of pseudo-code 400, given
training data (X, W,, Y )~"*“ P for 1<i<n (e.g., observational
data 130 of FIG. 1), the observational data 1s first partitioned

into training and validation sets, e.g., 7 ={(X., W,, Y)}.. -
and V={(X,, W, Y,)}._, respectively in the data line of
pseudo-code 400. An 1nitial cohort (e.g., an 1nitial genera-
tion) of ¢ independent candidates 1s generated (e.g., models
with candidate first transformations ®(X), as 1n equation
(8)). Genetic algorithm 300 of FIG. 3 illustrates, (in the
uppermost horizontal row of transformations), the initial
generation of models 310. Note that each model (e.g., P(X))
of the 1nitial generation of models 310, as well as each model
in subsequent generations of models 1s graphically illus-
trated as a 2-tensor (e.g., matrix M, ) paired with a 1-tensor
(e.g., column vector b,). For simplicity, the activation func-
tion a 1s not shown in FIG. 3.

[0057] Referring again to the pseudo-code 400 of FIG. 4,

each model 1n the initial generation of models (e.g., 1mitial
generation of models 310) 1s generated as indicated in the for
loop of lines 1-3 pseudo-code 400. Namely, for 1<<c, 1s
separate ®: 1s instantiated using randomized seed values. In
at least one embodiment, a Glorot normal 1nitialization
process 1s employed to seed the 1nitial weights and zeros for
the biases. A neural network trainer (e.g., NN trainer 122 of
FIG. 1) can be employed to seed and train each of the models
via the training dataset. A batch-based gradient descent
process can be employed on the training set to converge on
a solution that tends to seek an optimization to equation (7).
In some embodiments, an Adam optimizer, which maintains
parameter-specific learning rates, can be employed. Such an
optimizer can enable these rates to sometimes increase by
adapting them using the first two moments from recent
gradient updates. A Tikhonov regularization can be
employed for the weights. A dropout layer can be employed
after the a(x)=arctan(x) activation function to prevent over-
fitting to the training dataset.

[0058] As indicated in line 4 of pseudo-code 400, for each

member ®; of the initial generation of models, another
network (e.g., 8¢ o as 1n (9)) 1s initialized and trained (e.g.,

via the NN trainer) to seek W =miny, IE IW—gT @(X)I
indicated 1n equation (10). The training can be employed to

evaluate the objective function I\N—g@r @(X)|2 The vali-
dation dataset can be employed to estimate w@®;). The

£ fittest members (e.g., models) of the current cohort (e.g.,
the current generation of models) can be employed to form
a new cohort (e.g., a new generation of models) via the
genetic algorithm (e.g., genetic algorithm 300 of FIG. 3).
That 1s, the 1nitial generation of models (which includes c)

members is culled to include £ members, where ¢ . To
perform the culling of the generation, the models 1n the
generation of models can be ranked via the objective func-

tion indicated in equation (10), where the top ¢ ranking
models are chosen to form “mating pairs” for the next
generation of models.

[0059] After the generation, training, and culling of 1nitial
generation of models (e.g., initial generation of models 310
of FIG. 3), an evolution module (e.g., evolution module 124
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of FIG. 1) can 1teratively perform a genetic algorithm (e.g.,
genetic algorithm 300 of FIG. 3) on the 1nitial generation of
models. The three nested for loops in lines 5-20 denote the
iterative genetic algorithm. The outermost for loop (e.g., as
defined between lines 5 and 20 1n pseudo-code 400) iterate
over the g generations. The middle for loop (e.g., as defined
between lines 7 and 15 of pseudo-code 400) iterates over the
mating pairs of transformations of each generation of the set
of generations. The 1nnermost for loop (e.g., as defined
between lines 9 and 12 of pseudo-code 400) loops over the
rows of the 2-tensors and performs the stochastic mixing,
combining, and/or blending of the genetics of each mating
pair of transformations.

[0060] Returning to the graphical depiction of the genetic
algorithm 300, as depicted in FIG. 3, each row denotes a
single generation of models. The vertical arrow pointing
down 1ndicates a temporal axis 360 of the algorithm 300.
The initial generation of models 310 (e.g., the 1¥ generation)
1s shown at the earliest time (e.g., the top row of models).
The final generation of models 330 (e.g., the g” generation)
1s shown at the latest time (e.g., the bottom row of models).
The second generation of models 320 1s generated from
mating pairs of models from the 1nitial generation of models

310. More specifically, the ¥ fittest members of the initial
generation 310 are selected. The ranking for the fittest can be
based on equation (10). The single fittest member of each
generation 1s chosen to be included i1n the subsequent
generation of models, and shown by the rightmost column of
models 350, which 1s labeled as the “best performing
transformation from previous generation.” The arrows
pointing to the entries 1n the rightmost column 350 indicate
the fittest member of each generation surviving to the next
generation. In the various embodiments, the rows between
two parents can be stochastically crossed-over (or selected)
to generate the offspring generation. This stochastic cross-
over 1s shown in the innermost for loop in lines 9-12 of
pseudo-code 400 of FIG. 4. In the non-limiting embodiment
of FIG. 4, the stochastic element of the genetic crossover 1s
generated via the Bernoulli distribution. Other embodiments
can not be so limited, and other statistical distributions can
be employed in other embodiments.

[0061] A subsequent generation 1s 1nitialized to include the
best performing candidate (e.g., as denoted by the objective
function of equation (10)) from the previous generation, as
denoted in line 6 of pseudo-code 400. At the start of the
middle for loop of pseudo-code 400 (e.g., line 7 of pseundo-

code 400), each of the ¥ fittest members of a generation are
employed as parents to form

mating pair generates a child or offspring transformation for
the subsequent generation. In FIG. 3, the arrows from one
generation to the next show the mating of transformations to
generate an offspring transformation for the subsequent
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generation. For clarity purposes, not all the mating pairings
and arrows are shown 1n FIG. 3. For embodiments where

one or more spontaneously generated transformations 340
can be included 1n each generation, as shown 1n the leftmost
column of transformations in FIG. 3. The spontaneous

generation of models to “fill-out” a generation 1s shown 1n
the while loop of pseudo-code 400 (e.g., lines 16-19 of
pseudo-code 400).

[0062] More specifically, in lines 7-12, a crossover method
(e.g., the Montana and David node-based crossover method)
can be applied to each of the

pairings. The crossover methods can be applied to determine
the parameters M, and b, that are used to form & in the
child. This amounts to forming a new ¢ by randomly
selecting one of the two parents and using that parent’s
mapping for each coordinate. In lines 9-12 of pseudo-code
400, the new (or child) M, and b, are selected in a row-wise
manner from the corresponding rows of the parents. In line
13 of pseudo-code 400, the new M, and b, are randomly
mnitialized and a few steps of optimization are performed
(e.g., by the NN trainer) to form the offspring candidate. In
lines 16-19, the next generation 1s filled-out with spontane-
ously generated (and trained) transformations (e.g., the
while loop 1n lines 16-19 of pseudo-code 400. The next
generation then consists of the best performing

candidate from the previous generation, candidates formed

by crossing the best € candidates of the previous genera-
tion, and

()

enfirely new candidates generated from scratch. In line 21,
the fittest evolved transformation (e.g., the one that most
satisfies fitness objective (2) 1s selected as the evolved
transformation. At line 22 of pseudo-code 400, the selected
transformation 1s returned.

[0063] In the various embodiments, the computations of
the valuation function can be performed by training a
network of the form of equation (9) to minimize (or at least
decrease) IW—gy o(X)I® on training batches and then
approximating equation (10) by taking the empirical mean
on the validation set. A causal model module (e.g., causal
model module 126 of FIG. 1) can employ the returned
transformation to calculate the CATE of a novel subject,
given 1ts feature vector representation.
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[0064] Based on the choice of the representation @ 1n
equation (8), upon training the network using equation (6) to
optimize equation (7), the relationship between the learned
features ©(X) and the outcome Y can be approximately
linear. In particular, Y=M,-®(X) for M, as given 1n (6). For
this reason, causal meta-learners can be trained using a
linear regression base learner. Such trained meta-learners
can benefit more extensively from using the transformed
features 1nstead of the original features, especially 1n cases
where the relationship between the original features and
outcomes 1s not well-approximated as linear.

Generalized Processes for Determining Heterogeneous
Causal Effects

[0065] Processes 500-600 of FIGS. 5-6, or portions
thereof, can be performed and/or executed by any computing
device, such as but not limited to, client computing device
102 of FIG. 1, server computing device 104 of FIG. 1, and/or
computing device 700 of FIG. 7. Additionally, a treatment
analyzer, such as but not limited to treatment analyzer 120
of FIG. 1, can perform and/or execute at least portions of

processes 500-600.

[0066] FIG. 5 1llustrates one embodiment of a method 500
for determining a heterogeneous causal effect, which 1s
consistent with the various embodiments presented herein.
Process 500 can be performed by a treatment analyzer, such
as but not limited to treatment analyzer 120 of FIG. 1.
Furthermore, various blocks of method 500 can be imple-
mented 1n pseudo-code 400 of FIG. 4, and vice-versa. That
1s, any of the lines of pseudo-code 400 can implement any,
or at least some of the aspects of method 500.

[0067] As shown at block 502, observational data (e.g.,
observational data 130 of FIG. 1) 1s received. The observa-
tional data can 1nclude a set of observations associated with
a treatment. Each observation of the set of observations can
be associated with a subject. Each observation of the set of
observations can include a first object encoding a first set of
features (e.g., X) for the observation (or the associated
subject), a second object encoding a treatment assignment
(e.g., W) for the observation (or the associated subject), and
a third object encoding an outcome (e.g., Y) for the obser-
vation (or the subject). The data line of pseudo-code 400
described segmenting the observational data into a training
dataset and a validation training set.

[0068] At block 504, an 1ni1tial generation of models (e.g.,
initial generation of models 310 of FIG. 3) 1s generated. The
generation of the initial generation of models can be based
on a first objective function, e.g., equation (7). In some
embodiments, the first objective function can additionally
(or alternatively) include equation (10). Each model of the
initial generation of models includes a separate first trans-
formation (e.g., @) that generates a second set of features
(e.g., (X)) for each observation of the set of observations.
The first objective function 1ndicates an expected value for
the second set of features being predictive of the outcome for
the observation (e.g., fitness objective (1)).

[0069] In some embodiments, generating the initial gen-
eration of models includes, for each model of the initial-
generation of models, 1itializing a set of weights for the first
transformation of the model. Initializing the set of weights
can be based on stochastic sampling of one or more distri-
butions (e.g., the binomial distribution) of 1nitial weights.
For each model of the initial-generation of models, the set of
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weights for the first transformation can be iteratively
updated based on the first objective function.

[0070] At block 506, generations of models are generated.
The generations of models are generated based on 1teratively
applying a genetic algorithm (e.g., genetic algorithm 300 of
FIG. 3). Each generation of models includes genetic cross-
overs, based on a selection criteria (e.g., {itness objective (1)
and/or (2)), from another generation of models (e.g., the
previous generation) that 1s an ancestral generation of mod-
¢ls to the generation of models.

[0071] In various embodiments, each generation of mod-
els (e.g., each cohort) includes a set of models. Each model
of the set of models (e.g., of a generation or a cohort)
includes a separate first transformation that generates a
second set of features for each observation of the set of
observations and a separate second transformation that gen-
erates a third set of features for each observation of the set
ol observations. Generating the cohort (or generation of
models) can include for each model of the generation of
models, mitializing a set of weights for the second transior-
mation ol the model. Initializing the set of weights can be
based on stochastic sampling of one or more distributions
(e.g., the binomial distribution) of mitial weights. For each
model of the set of models, the set of weights for the second
transformation can be iteratively updated based on decreas-
ing a value of a second objective function that indicates an
expected value for the third set of features being predictive
of the treatment assignment for the observation.

[0072] In some embodiments, each generation mncludes a
fittest-model from an ancestral-generation (e.g., the genera-
tion that directly precedes the current generation) of models.
Selecting the fittest-model can be based on the selection
criteria. As such, a descendant-generation (e.g., the current
generation) of models can be generated to include the
fittest-model from the ancestral-generation of models.

[0073] Insome embodiments, for the current generation of
models, a descendant-model 1s generated based on stochas-
tically generating a set of genetic crossovers between the
two models of the pair of models. A descendant-generation
of models can be generated that includes the descendant-
model of each possible pairing of two models from the set
of fittest-models. In such embodiments, a pair of two models
includes a first model and a second model. The set of genetic
crossovers between the first model and the second model can
include a stochastic shuflling of elements of a first transior-
mation of the first model and elements of a first transior-
mation of the second model to form a first transformation for
a descendant-model of the pair of two models that generates
a second set of features for each observation of the set of
observations.

[0074] In at least one embodiment, for each model of a
generation of models (e.g., a cohort), a fitness metric 1s
assigned to the model. The fitness metric can scale with the
decreased value of the second objective function for the
model. In such embodiments, the selection criteria 1s
employed to select a fittest-model of the set of models. The
selection criteria selects, as the fittest-model, the model that
has been assigned a largest fitness metric.

[0075] At block 508, an evolved model 1s selected from
the generations of models based on the selection criteria. At
block 510, a heterogeneous eflect (e.g., the CATE) for the
treatment 1s determined based on the set of observations and
the evolved model. For example, a causal model (e.g., causal

model module 126 of FIG. 1) can calculate the CATE.
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[0076] FIG. 6 illustrates one embodiment of another
method 600 for determiming a heterogeneous causal eflect,
which 1s consistent with the various embodiments presented
herein. Process 600 can be performed by a treatment ana-
lyzer, such as but not limited to treatment analyzer 120 of
FI1G. 1. Furthermore, various blocks of method 600 can be
implemented 1n pseudo-code 400 of FIG. 4, and vice-versa.
That 1s, any of the lines of pseudo-code 400 can implement
at least some of the aspects of method 600.

[0077] As shown at block 602, a first vector representation
of a subject 1s received (e.g., an original feature set). At
block 604, a second vector representation of a subject 1s
generated (e.g., a transformed feature set). The second
vector representation can be generated based on a transior-
mation of the first vector representation. For example, the
transformation can have been evolved via method 500 of
FIG. 5. At block 606, a heterogencous eflect (e.g., the
CATE) 1s determined for the subject using the second vector
representation. The determination of the second eflect can be
further based on a causal model (e.g., an S-learner, a
T-learner, an R-learner, or the like). The causal model was
trained, 1n some configurations, by transforming an obser-
vational dataset with the transformation that generates the
second vector representation of the subject. The subject can
be a novel subject, e.g., a subject for which an observation
1s not included in the observational data employed to train
the causal model. At block 608, 1t 1s determined whether to
perform the treatment on the novel subject based on deter-
mined heterogeneous eflect. If 1t 1s decided to provide the
treatment to the subject, the treatment can be administered
to the subject.

Additional Embodiments

[0078] Aspects of the technology described herein deter-
mine the causal eflect (e.g., conditional average treatment
cllect (CATE)) for a novel subject based on observational
data that excludes an observation for the novel subject. The
observational data includes vector representations (1n a first
vector space) for experimental subjects, a treatment assign-
ment for each experimental subject, and an outcome for each
experimental subject. Population-level differences exist
between the control and treatment groups of the experimen-
tal subjects. To de-bias correlations between the intra-group
experimental subjects, the vector representations are trans-
formed to a second vector space. The employed transior-
mation was evolved via a genetic algorithm. The evolution
ol the transformation selects for the non-conservation of
such intra-group correlations. A meta-learner 1s trained
based on the transformed observational data. The trained
meta-learner and the evolved transformation are employed
to estimate the CATE for the novel subject. The treatment 1s

or 1s not provided to the experimental subject based on the
CATE

[0079] More specifically, the technology described herein
1s directed towards enhanced methods and systems for
estimating heterogeneous causal eflects. In at least one
embodiment, a set of observations associated with a treat-
ment 1s received. Each observation of the set of observations
can include a first object, a second object, and a third object.
That 1s, the observational data can include a set of 3-tuples.
Each of the 3-tuples of the set of 3-tuples can encode an
experimental observation for a subject of a set of experi-

mental subjects. The first object (e.g., XER ) of a subject’s
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3-tuple can encode a first set of features for the observation
or subject. The second object (e.g., W=0 or 1) can encode a
treatment assignment for the observation or subject. The

third object (e.g., YER) can encode a scalar outcome for the
observation or subject. The first object can be a 1-tensor
embedded 1n a first vector space, the second object can be a
boolean, and the third object can be a O-tensor.

[0080] An mmtial-generation of models (e.g., machine
learning models) can be generated. The generation of the
initial generation of models can be based on a first objective
tfunction. Fach model of the imtial-generation of models can
include a separate first transformation (e.g., ® that generates
a second set of features (e.g., ®(X)) for each observation of
the set of observations. That 1s, the first transformation can
be a 2-tensor that represents a non-linear operator that
operates on X. When operated on by @, the first object 1s

transformed to another 1-tensor (B(X)ER™) that is embed-
ded 1n a second vector space. In some embodiments, d>m.
The first objective function can indicate an expected value
for the second set of features being predictive of the outcome
for the observation. The first objective function can resemble
and/or include equation 7, as discussed above.

[0081] A set of generations of models can be generated.
Generating the set of generations of models can be based on
iteratively applying a genetic algorithm on the imitial-gen-
eration of models. Each generation of models of the set of
generations of models can include genetic crossovers, based
on a selection criteria, from another generation of models of
the set of generations of models. The other generation of
models can be an ancestral generation of models to the
generation of models. The selection criteria can be consis-
tent with one or more fitness objectives, such as but not
limited to fitness objectives (1) and (2) discussed through-
out. After a suflicient evolution of the set of generations, an
evolved model from the set of generations of models can be
selected based on the selection critenia.

[0082] In some embodiments, a heterogeneous effect of
the treatment can be determined or estimated. Estimating the
heterogeneous eflect can be based on the set of observations
and the evolved model. The heterogeneous ellect can be a
conditional average treatment effect (CATE). In some
embodiments, the observational data 1s transformed via the
selected evolved model. A meta-learner (e.g., an S-learner,
T-learner, R-learner, or the like) can be trammed via the
transformed observational data. The trained meta-learner
can be employed to determine the CATE for a novel subject
(e.g., a subject not included in the observational data). A
decision whether to provide the treatment to the novel
subject can be made based on the estimated CATE {for the
novel subject. If appropniate (based on the estimated CATE),
the treatment can be provided to the novel subject. If not
appropriate, the treatment can be withheld from the novel
subject.

[0083] In various embodiments, generating the itial-
generation of models can include, for each model of the
initial-generation of models, initializing a set of weights for
the first transformation of the model. Initializing the set of
weilghts can be based on stochastic sampling of one or more
distributions of i1mitial weights. For each model of the
initial-generation of models, the set of weights for the first
transformation can be iteratively updated. Iteratively updat-
ing the set of weights can be based on the first objective
function.
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[0084] In some embodiments, a current iteration of 1tera-
tively applying the genetic algorithm on the 1mitial-genera-
tion of models can include selecting a set of fittest-models
from an ancestral-generation of models of the set of gen-
erations of models. Selecting the set of fittest models can be
based on the selection criteria. A descendent-generation of
models that includes the fittest-model from the ancestral-
generation ol models can be generated. The descendent-
generation of models can be included 1n the set of genera-
tions of models.

[0085] In various embodiments, a current iteration of
iteratively applying the genetic algorithm on the initial-
generation ol cohorts can additionally and/or alternatively
include selecting a set of fittest-models from an ancestral-
generation of models of the set of generations of models.
Selecting the set of fittest-models can be based on the
selection criteria. For each possible pairing of two models
from the set of fittest-cohorts, a descendent-model can be
generated. Generating the descendent-model can be based
on stochastically generating a set of genetic crossovers
between the two models of the pair of models. A descendent-
generation ol models can be generated. The descendent-
generation of models can include the descendent-model of
cach possible pairing of two models from the set of fittest-
models. The descendent-generation of models can be
included in the set of generations of models.

[0086] A pair of two models can include a first model and
a second model. The set of genetic crossovers between the
first model and the second model can include a stochastic
shuflling of elements of a first transformation of the first
model and elements of a first transformation of the second
model to form a first transformation for a descendent-model
of the pair of two models. The first generation of the

descendent-model can be employed to generate a second set
of features for each observation of the set of observations.

[0087] In at least one embodiment, each generation of the
set of generations of models 1ncludes a set of models. Each
of the models of the set of models can include a separate first
transformation that 1s employable to generate a second set of
teatures for each observation of the set of observations. Each
model can additionally include a separate second transior-
mation that 1s employable to generate a third set of features
for each observation of the set of observations. Generating
the set of models can include, for each model of the set of
models, mitializing a set of weights for the second transior-
mation of the model based on stochastic sampling of one or
more distributions of mitial weights. For each model of the
set of models, the set of weights for the second transforma-
tion can be 1teratively updated. Iteratively updating the set of
weights can be based on decreasing a value of a second
objective function. The second objective function can 1ndi-
cate an expected value for the third set of features being
predictive of the treatment assignment for the observation.

[0088] Insomeembodiments, generating the set of models
can further include, for each model of the set of models,
assigning a fitness metric to the model. The fitness metric
can scale with the decreased value of the second objective
function for the model. The selection criteria can be
employed to select a fittest-model of the set of models. The
selected fittest-model can have been assigned the largest
fitness metric of the set of models.

[0089] In another embodiment, data regarding a set of
observations can be received. The data for each observation

can 1nclude a feature set, a treatment, and an outcome. A
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lineage of models (e.g., a set of generations of models) can
be evolved by iteratively “re-shufilling” and combining
aspects ol models from an 1nitial generation of models. The
models of the lineage of models can include machine
learning models. The lineage (or set ol generations) can
include subsequent and/or new generations of models (e.g.,
generations of models that are descended from the initial
generation of models), which can be employed to determine
a transformed feature set from the feature set. An algorithm
(e.g., a genetic algorithm) can be applied to a subset of a
generation’s models. The subset of models can be selected
from a first (e.g., an 1mitial or an 1ntermediate) generation of
models, to generate a new (or subsequent) generation of
models. The new generation of models can have been
“reproductively” generated similarly to that discussed above
to generate a lineage of models. Thus, the generation of the
lineage, including the selection of the subset of models, can
be based on a fitness criteria for each model. The models can
include a learned transformation that 1s at least partially
implemented via an intermediate layer in a neural-network
based architecture and/or a 2-tensor. The fitness criteria can
be biased 1n learning a mapping of a first vector space (e.g.,
a vector space associated with the un-transformed feature
sets) to a second vector space (e.g., a latent vector space
associated with the transformed feature sets). The fitness
criteria can be biased in selecting the transforming interme-
diate layer (e.g., a particular matrix selected from a search
space comprising all such possible transformations), such
that the transformed feature sets are at least somewhat
predictive of an outcome. One or more models of the lineage
of models can be employed to generate training data that
includes the transtormed feature set for each observation, the
treatment for the observation, and the outcome for the
observation. The tramning data can be employed to tran
another model (e.g., a causal model). The causal model can
be a meta-learner model.

[0090] In still another embodiment, data regarding a set of
observations can be received (e.g., training data at least
similar to the training data discussed above). The training
data can be employed to train a first (e.g., an 1mtial and/or
intermediate) generation of first models (e.g., models of a
first model type). The first model type can be implemented
by an mtermediate layer 1in a neural network-based archi-
tecture or a 2-tensor, where 1n the intermediate layer
includes a transformation for the feature sets. For each
model of the first generation of models, a second (machine
learning) model can be trained. The second model can be a
second model type, where the intermediate layer of the first
model 1s employed as an iput layer of the second model.
The second model can be trained to predict the outcome for
the transformed feature set generated by the intermediate
layer of the first model.

[0091] A new (e.g., a subsequent and/or final) generation
of first models can be generated via an algorithm (e.g., a
genetic algorithm). The algorithm can select a subset of the
first models from the trained first generation of first models
based on a fitness criteria. The fitness criteria can be at least
partially aligned with the goal of generating the intermediate
layer (of the first models) that 1s predictive of a treatment,
based on transformed {feature sets. The algorithm 1s
employed to generate the new generation of first models by
having parent pairs of models (included 1n the selected
subset of models) to reproduce and generate child models of
the new generation of first models. One or more models of
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the new generation of models can be employed to generate
transiformed training data. The transformed training data can
include transformed feature sets, as well as corresponding
treatments and outcomes. The transformed feature sets being,
representative of the feature sets 1n a latent vector space of
the first models.

[lustrative Computing Device

[0092] Having described embodiments of the present tech-
nology, an example operating environment 1 which
embodiments of the present technology can be implemented
1s described below 1n order to provide a general context for
various aspects of the present technology. Referring to FIG.
7, an 1llustrative operating environment for implementing
embodiments of the present technology 1s shown and des-
ignated generally as computing device 700. Computing
device 700 1s but one example of a suitable computing
environment and 1s not intended to suggest any limitation as
to the scope of use or functionality of the technology
described herein. Neither should the computing device 700
be imterpreted as having any dependency or requirement
relating to any one or combination of components 1llus-
trated.

[0093] Embodiments of the technology can be described
in the general context of computer code or machine-readable
instructions, 1ncluding computer-executable instructions
such as program modules, being executed by a computer or
other machine, such as a smartphone or other handheld
device. Generally, program modules, or engines, including
routines, programs, objects, components, data structures,
etc., refer to code that perform particular tasks or implement
particular abstract data types. Embodiments of the technol-
ogy can be practiced 1n a variety of system configurations,
including hand-held devices, consumer electronics, general-
purpose computers, more specialized computing devices,
ctc. Embodiments of the technology can also be practiced 1n
distributed computing environments where tasks are per-
formed by remote-processing devices that are linked through
a communications network.

[0094] With reference to FIG. 7, computing device 700
includes a bus 710 that directly or indirectly couples the
following devices: memory 712, one or more processors
714, one or more presentation components 716, input/output
ports 718, mput/output components 720, and an illustrative
power supply 722. Bus 710 represents what can be one or
more buses (such as an address bus, data bus, or combination
thereol). Although the various blocks of FIG. 7 are shown
with clearly delineated lines for the sake of clarity, 1n reality,
such delineations are not so clear and these lines can
overlap. For example, one can consider a presentation
component such as a display device to be an I/O component,
as well. Also, processors generally have memory 1n the form
of cache. We recognize that such 1s the nature of the art, and
reiterate that the diagram of FIG. 7 1s merely illustrative of
an example computing device that can be used 1n connection
with one or more embodiments of the present disclosure.
Distinction 1s not made between such categories as “work-
station,” “server,” “laptop,” “hand-held device,” etc., as all
are contemplated within the scope of FIG. 7 and reference
to “computing device.”

[0095] Computing device 700 typically includes a vaniety
of computer-readable media. Computer-readable media can
be any available media that can be accessed by computing
device 700 and includes both volatile and nonvolatile media,
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removable and non-removable media. By way of example,
and not limitation, computer-readable media can comprise
computer storage media and communication media.

[0096] Computer storage media include volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer-readable 1nstructions, data structures, program
modules or other data. Computer storage media includes, but
1s not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to
store the desired imnformation and which can be accessed by
computing device 700. Computer storage media excludes
signals per se.

[0097] Communication media typically embodies com-
puter-readable instructions, data structures, program mod-
ules or other data 1n a modulated data signal such as a carrier
wave or other transport mechanism and 1ncludes any infor-
mation delivery media. The term “modulated data signal™
means a signal that has one or more of 1ts characteristics set
or changed 1n such a manner as to encode information 1n the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of any of the above should also be included within the
scope of computer-readable media.

[0098] Memory 712 includes computer storage media 1n
the form of volatile and/or nonvolatile memory. Memory
712 can be non-transitory memory. As depicted, memory
712 includes 1nstructions 724. Instructions 724, when
executed by processor(s) 714 are configured to cause the
computing device to perform any of the operations described
herein, in reference to the above discussed figures, or to
implement any program modules described herein. The
memory can be removable, non-removable, or a combina-
tion thereof. Illustrative hardware devices include solid-state
memory, hard drives, optical-disc drives, etc. Computing
device 700 includes one or more processors that read data
from various entities such as memory 712 or I/O compo-
nents 720. Presentation component(s) 716 present data indi-
cations to a user or other device. Illustrative presentation
components include a display device, speaker, printing com-
ponent, vibrating component, etc.

[0099] 1/O ports 718 allow computing device 700 to be
logically coupled to other devices including I/O components
720, some of which can be built 1n. Illustrative components
include a microphone, joystick, gamepad, satellite dish,
scanner, printer, wireless device, etc.

[0100] Embodiments presented herein have been
described 1n relation to particular embodiments which are
intended 1n all respects to be illustrative rather than restric-
tive. Alternative embodiments will become apparent to those
of ordinary skill 1n the art to which the present disclosure
pertains without departing from its scope.

[0101] From the foregoing, 1t will be seen that this dis-
closure 1s one well adapted to attain all the ends and objects
hereimnabove set forth together with other advantages which
are obvious and which are inherent to the structure.

[0102] It will be understood that certain features and
sub-combinations are of utility and can be employed without
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reference to other features or sub-combinations. This 1s
contemplated by and 1s within the scope of the claims.

[0103] In the preceding detailed description, reference is
made to the accompanying drawings which form a part
hereof wherein like numerals designate like parts through-
out, and 1n which 1s shown, by way of illustration, embodi-
ments that can be practiced. It 1s to be understood that other
embodiments can be utilized and structural or logical
changes can be made without departing from the scope of
the present disclosure. Therefore, the preceding detailed
description 1s not to be taken in a limiting sense, and the
scope ol embodiments 1s defined by the appended claims
and their equivalents.

[0104] Various aspects of the illustrative embodiments
have been described using terms commonly employed by
those skilled 1n the art to convey the substance of their work
to others skilled in the art. However, 1t will be apparent to
those skilled in the art that alternate embodiments can be
practiced with only some of the described aspects. For
purposes ol explanation, specific numbers, materials, and
configurations are set forth 1in order to provide a thorough
understanding of the illustrative embodiments. However, 1t
will be apparent to one skilled in the art that alternate
embodiments can be practiced without the specific details.
In other instances, well-known features have been omitted or
simplified 1n order not to obscure the illustrative embodi-
ments.

[0105] As used herein, the terms “tensor” and “array” can
be used imterchangeably to refer to data structures (e.g., a
data object) that have one or more components. Such data
objects can be, but need not be, multi-dimensional data
object. For example, the terms “3-tensor” and “3D array”
can be used mterchangeably to refer to a 3D data object that
requires 3 indices to refer to a specific component of the data
object. The terms “2-tensor,” “matrix,” and “2D array” can
be used interchangeably to refer to a 2D data object that
requires 2 1ndices to refer to a specific component of the data
object. The terms “l-tensor,” “vector,” “1D array,” and
“n-tuple” can be used interchangeably to refer to a 1D data
object that requires 1 index to refer to a specific component
of the data object. The terms “O-tensor” and “scalar” can
refer to a zero-dimensional data object that includes only a
single component, and thus no indices are required to refer
to the data object’s single component. Note that in the
various embodiments, the components of a 2D (or higher-
dimensional) data object need not, but can, be encoded as 2D
(or higher-dimensional) data object. For example, a 2D array
can be “flattened” 1into an encoding that 1s consistent with a
1D array. Also note that the employment of terms, such as
“tensor,” “matrix,” “vector,” and “scalar’ to refer to various
data objects does not need to, but can, imply that the
components of these data objects need to transform by
conventional covariant and contravariant transformation
laws and/or rules that are employed in the machinery of
differential geometry. For example, the “proper length” of a
vector (as determined via a suitable metric tensor for a
Euclidean or Riemannian manifold) or the value of a scalar
need not be frame nvariant.

[0106] Various operations have been described as multiple
discrete operations, 1n turn, in a manner that 1s most helpful
in understanding the illustrative embodiments; however, the
order of description should not be construed as to imply that
these operations are necessarily order dependent. In particu-
lar, these operations need not be performed 1n the order of
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presentation. Further, descriptions of operations as separate
operations should not be construed as requiring that the
operations be necessarily performed independently and/or
by separate entities. Descriptions of entities and/or modules
as separate modules should likewise not be construed as
requiring that the modules be separate and/or perform sepa-
rate operations. In various embodiments, 1llustrated and/or
described operations, entities, data, and/or modules can be
merged, broken into further sub-parts, and/or omitted.

[0107] The phrase “in one embodiment™ or “in an embodi-
ment” 1s used repeatedly. The phrase generally does not refer
to the same embodiment; however, 1t can. The terms “com-
prising,” “having,” and “including’ are synonymous, unless
the context dictates otherwise. The phrase “A/B” means “A
or B.” The phrase “A and/or B” means “(A), (B), or (A and
B).” The phrase “at least one of A, B and C” means “(A),
(B), (C), (Aand B), (A and C), (B and C) or (A, B and C).”

What 1s claimed 1s:

1. A non-transitory computer-readable medium storing
executable 1nstructions, which when executed by a process-
ing device, cause the processing device to perform opera-
tions comprising:

receiving traiming data regarding a set of observations,

cach observation including a feature set, a treatment,
and an outcome;

training, using the traiming data, a first generation of
machine learning (ML) models to predict an outcome
for a feature set of a given observation;

generating a new generation of ML models by:

selecting a subset of ML models from the trained first
generation of ML models based on a fitness criteria
of each ML model to generate an imntermediate layer
for use 1n predicting a treatment; and

applying an algorithm to the selected subset of ML
models to generate the new generation of ML mod-
els; and

generating, using a ML model of the new generation of

ML models, a transformed training data from the

training data, the transformed training data comprising,

for each observation, a transformed feature set com-
prising a representation of the feature set in a latent
space of the ML model.

2. The non-transitory computer-readable medium of claim
1, wherein training the first generation of ML models
COmMprises:

for each ML model of the first generation of ML models,
initializing a set of weights for a first transformation of
the ML model based on stochastic sampling of one or
more distributions of initial weights; and

for each ML model of the first generation of ML models,
iteratively updating the set of weights for the first
transformation based on the fitness criteria.

3. The non-transitory computer-readable medium of claim
1, wherein generating the new generation of ML models
COmMprises:

selecting a fittest-model, based on the fitness criteria, from
the first generation of ML models; and

generating the new generation of ML models to include
the fittest-model from the first generation of ML mod-
els.

4. The non-transitory computer-readable medium of claim
1, wherein generating the new generation of ML models
COmMprises:
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for each possible pairing of two ML models from the
selected subset of ML models, generating a descendent-
model based on stochastically generating a set of
genetic crossovers between the two ML models of the
pair of ML models; and

generating the new generation of ML models to include
the descendent-model of each possible pairing of two
ML models from the selected subset of ML models.

5. The non-transitory computer-readable medium of claim
4, wherein a pair of two ML models 1ncludes a first ML
model and a second ML model, and the set of genetic
crossovers between the first ML model and the second ML
model includes a stochastic shufiling of elements of a first
transformation of the first ML model and elements of a first
transformation of the second ML model to form a first
transformation for a descendent-model of the pair of two
ML models that generates the transformed feature set for
cach observation of the transformed training data.

6. The non-transitory computer-readable medium of claim
1, wherein each ML model of the new generation of ML
models includes a separate first transformation that gener-
ates the transformed feature set for each observation of the
transformed training data and a separate second transforma-
tion that generates a third feature set for each observation of
the transformed training data, and generating the new gen-
eration of ML models comprises:

for each ML model of the new generation of ML models,
mitializing a set of weights for the second transforma-
tion of the ML model based on stochastic sampling of
one or more distributions of initial weights; and

for each ML model of the new generation of ML models,
iteratively updating the set of weights for the second
transformation based on decreasing a value of an
objective function that indicates an expected value for
the third feature set being predictive of a treatment
assignment for the observation.

7. The non-transitory computer-readable medium of claim
6, wherein generating the new generation of ML models
further comprises:

for each ML model of the new generation of ML models,
assigning a fitness metric to the ML model that 1s based

on the fitness criteria, wherein the fitness metric scales

with the decreased value of the objective function for
the ML model; and

employing the fitness criteria to select a fittest-model of
the new generation of ML models, wherein the selected
fittest-model has been assigned a largest fitness metric
of the new generation of ML models.

8. The non-transitory computer-readable medium of claim
1, wherein the operations further comprise:

determining a heterogeneous eflect of the treatment based
on the transformed traiming data and a causal ML

model.

9. The non-transitory computer-readable medium of claim
8, wherein the causal ML model 1s a meta-learning model,
the heterogeneous eflect 1s a conditional average treatment
cllect, and the operations further comprise:

employing the transformed training data to train the
meta-learning model.

10. The non-transitory computer-readable medium of
claim 1, wherein the algorithm 1s a genetic algorithm.
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11. A method comprising:

receiving data regarding a set of observations, the data for
cach observation including a feature set, a treatment,
and an outcome;

determining, using a machine learning (ML) model of a

new generation of ML models, a transformed feature
set from the feature set for each observation, the new
generation of ML models generated by applying an
algorithm to a subset of ML models selected from a first
generation of ML models based on a fitness criteria of
cach ML model to generate an intermediate layer for
use 1n predicting a treatment, the transformed feature
set comprising, for each observation, a representation
of the feature set 1n a latent space of the ML model;
generating training data comprising, for each observation,
the transformed feature set for the observation, the
treatment for the observation from the data, and the
outcome for the observation from the data; and
training a causal model based on the training data.

12. The method of claim 11, wherein the algorithm 1s a
genetic algorithm and the causal model 1s implemented by a
meta-learner.

13. The method of claim 11, wherein training the causal
model includes training the causal model to determine a
heterogeneous eflect of the treatment based on the trans-
formed training data.

14. The method of claim 11, wherein each ML model of
the new generation of ML models 1s implemented by a
neural network-based architecture and the intermediate layer
1s an intermediate layer in the neural network-based archi-
tecture.

15. The method of claim 11, further comprising:

employing other traiming data to train the first generation

of ML models to predict an outcome for a feature set of
a given observation.

16. The method of claim 135, wherein training the first
generation of ML models comprises:

for each ML model of the first generation of ML models,

iitializing a set of weights for a first transformation of
the ML model based on stochastic sampling of one or
more distributions of initial weights; and

for each ML model of the first generation of ML models,

iteratively updating the set of weights for the first
transformation based on the fitness criteria.

17. The method of claim 15, wherein generating the new
generation of ML models comprises:

selecting a fittest-model, based on the fitness criteria, from

the first generation of ML models; and

generating the new generation of ML models to include

the fittest-model from the first generation of ML mod-
els.
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18. A system comprising;:

a memory component; and

a processing device coupled to the memory component,
the processing device to perform operations compris-

ng:
receiving training data regarding a set of observations,
cach observation including a feature set, a treatment,
and an outcome;
training, using the training data, a first generation of first
machine learning (ML) models to predict an outcome
for a feature set of a given observation;
for each first ML model from the first generation of first
ML models, traiming a second ML model to predict a
treatment using an intermediate layer of the first ML
model as an 1nput layer to the second ML model;
generating a new generation of first ML models by:
selecting a subset of first MLL models from the trained
first generation of first ML models based on a fitness
criteria of each first ML model to generate an inter-
mediate layer for use by a corresponding second ML
model 1 predicting a treatment; and
using an algorithm to generate the new generation of
first ML models using the selected subset of first ML
models; and
generating, using a first ML model of the new generation
of ML models, a transformed training data from the
training data, the transtformed training data comprising,
for each observation, a transformed feature set com-
prising a representation of the feature set 1n a latent
space of the first ML model.
19. The system of claim 18, wherein generating the new
generation of ML models comprises:
for each possible pairing of two ML models from the
selected subset of ML models, generating a descendent-
model based on stochastically generating a set of
genetic crossovers between the two ML models of the
pair of ML models; and
generating the new generation of ML models to include
the descendent-model of each possible pairing of two
ML models from the selected subset of ML models.
20. The system of claim 19, wherein a pair of two ML
models includes a first ML model and a second ML model,
and the set of genetic crossovers between the first ML model
and the second ML model includes a stochastic shufiling of
clements of a first transformation of the first ML model and
clements of a first transformation of the ML second model
to form a first transformation for a descendent-model of the
pair of two ML models that generates the transformed
feature set for each observation of the transformed training
data.
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