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A B S T R A C T

Within the field of causal inference, we consider the problem of estimating heterogeneous treatment effects
from data. We propose and validate a novel approach for learning feature representations to aid the estimation
of the conditional average treatment effect or cate. Our method focuses on an intermediate layer in a neural
network trained to predict the outcome from the features. In contrast to previous approaches that encourage the
distribution of representations to be treatment-invariant, we leverage a genetic algorithm that optimizes over
representations useful for predicting the outcome to select those less useful for predicting the treatment. This
allows us to retain information within the features useful for predicting the outcome even if that information
may be related to treatment assignment. We validate our method on synthetic examples and illustrate its
use on a real life dataset. This paper extends work previously presented at the International Conference on
Computational Science in London (Burkhart and Ruiz, 2022).
1. Introduction

In this work, we engineer feature representations to aid the estima-
tion of heterogeneous treatment effects. Specifically, we consider the
following graphical model

𝑋

𝑊 𝑌

(1)

where 𝑋 ∈ R𝑑 denotes a vector of features, 𝑊 ∈ {0, 1} represents a
boolean-valued treatment, and 𝑌 ∈ R denotes a real-valued outcome.
Sampling from a distribution 𝑃 respecting the graph (1) may be viewed
as a multistep process that first generates a vector of features, then
assigns a treatment that may depend on those features, and finally
realizes an outcome given both the features and the treatment. Within
the Neyman–Rubin potential outcomes framework [1,2], we let 𝑌 (1)
denote the potential outcome if 𝑊 were set to 1 and 𝑌 (0) denote
the potential outcome if 𝑊 were set to 0. We wish to estimate the
conditional average treatment effect (cate) defined to be the expected
difference between the two potential outcomes conditioned on the
features, as a function of the features, namely

𝜏(𝑥) = E[𝑌 (1) − 𝑌 (0) ∣ 𝑋 = 𝑥]. (2)

✩ M.B. and G.R. gratefully acknowledge support from Adobe Inc. (San Jose, USA) during the development of this work.
∗ Corresponding author.
E-mail addresses: mcb93@cam.ac.uk (M.C. Burkhart), ruizg@ucla.edu (G. Ruiz).

We impose standard assumptions that the treatment assignment is un-
confounded, meaning that it is independent of the potential outcomes
after conditioning on the features, i.e.

{𝑌 (0), 𝑌 (1)}⟂⟂𝑊 ∣ 𝑋,

and random in the sense that assignment is non-deterministic for any
realized vector of features, i.e.

𝜖 < 𝑃 (𝑊 = 1 ∣ 𝑋 = 𝑥) < 1 − 𝜖

for some 𝜖 > 0 and all 𝑥 ∈ R𝑑 in the support of 𝑋. These assumptions
are jointly known as strong ignorability [3] and prove sufficient for the
cate to be identifiable. Under them, there exist well-established meth-
ods to estimate the cate from samples (𝑋𝑖,𝑊𝑖, 𝑌𝑖) ∼i.i.d. 𝑃 for 𝑖 = 1,… , 𝑛
(see Section 2.1 for a discussion) that then allow us to predict the
impact of an intervention for novel examples using only their individual
features [4]. Viewing these approaches as black box estimators, we seek
a mapping 𝛷 ∶ R𝑑 → R𝑚 such that the estimate of the cate learned on
the transformed training data (𝛷(𝑋𝑖),𝑊𝑖, 𝑌𝑖) is more accurate than an
estimate learned on the original samples (𝑋𝑖,𝑊𝑖, 𝑌𝑖). Our inspiration
stems from Nie and Wager’s recent work [5] that demonstrates clear
benefits from de-correlating the treatment propensity

𝑒(𝑥) = 𝑃 (𝑊 = 1 ∣ 𝑋 = 𝑥) (3)
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and the conditional mean outcome

𝑚(𝑥) = E[𝑌 ∣ 𝑋 = 𝑥] (4)

prior to inferring the cate.1 To this end, we desire a function 𝛷 yielding
corresponding representation 𝛷(𝑋) such that

1. 𝛷(𝑋) is as useful as 𝑋 for estimating 𝑌 , and
2. among such representations, 𝛷(𝑋) is least useful for estimating

𝑊 .

In this way, we hope to produce a representation 𝛷(𝑋) that retains all
information relevant for predicting the outcome, but is less related to
treatment assignment. We propose learning 𝛷 as an intermediate layer
in a neural network estimating a functional relationship of 𝑌 given 𝑋. We
apply a genetic algorithm [6] to a population of such mappings to evolve
and select one for which the associated representation 𝛷(𝑋) is least useful
for approximating 𝑊 . Feature representations are commonly used in
machine learning to aid the training of supervised models [7] and
have been previously demonstrated to aid in causal modeling. Jo-
hansson, et al. [8,9] viewed counterfactual inference on observational
data as a covariate shift problem and learned neural network-based
representations designed to produce similar empirical distributions
among the treatment and control populations, namely {𝛷(𝑋𝑖)}𝑊𝑖=1
and {𝛷(𝑋𝑖)}𝑊𝑖=0. Li & Fu [10] and Yao, et al. [11] developed repre-
sentations in a related vein designed to preserve local similarity. We
generally agree with Zhang et al.’s [12] recent argument that domain
invariance often removes too much information from the features for
causal inference.2 In contrast to most previous approaches, we develop
a feature representation that attempts to preserve information useful for
predicting the treatment effect if it is also useful for predicting the outcome.

1.1. Outline

This article extends our previous conference publication [14] and
patent application [15] with the introduction of a tunable fitness func-
tion in (10), a comparison of different activation functions (elu/relu/
tanh) in Tables 1 and 2 to address reviewer feedback, and the inclusion
of details previously suppressed due to page limitations. In the next
section, we describe methods for learning the cate from observational
data and introduce genetic algorithms. In Section 3, we describe our
methodology in full. We then validate our method on artificial data in
Section 4 and on a publicly available experimental dataset in Section 5
before concluding in Section 6.

2. Related work

In the first part of this section, we discuss standard methods for
learning the cate function from data. We will subsequently use these
to test our proposed feature engineering methods in Section 4. In the
second part, we briefly outline evolutionary algorithms for training
neural networks, commonly called neuroevolutionary methods.

2.1. Meta-learners

We adopt the standard assumptions of unconfoundedness and the
random assignment of treatment effects that together constitute strong
ignorability. Given i.i.d. samples from a distribution 𝑃 respecting (1)
and these assumptions, there exist numerous meta-learning approaches
that leverage an arbitrary regression framework (e.g., random forests,
neural networks, linear regression models, etc.) to estimate the cate that
we now describe.

1 In their own words, ‘‘any good heterogeneous treatment effect estimator
eeds to achieve two goals: first, it should eliminate spurious effects by con-
rolling for correlations between 𝑒(𝑋) and 𝑚(𝑋); second, it should accurately

express 𝜏(𝑋).’’ They then propose an approach that ‘‘cleanly separates these
two tasks.’’

2

2

Zhao et al. [13] make this argument in a more general setting. h
2.1.1. S-learner
The S-learner (single-learner) uses a standard supervised learner

(regression model) to estimate

𝜇(𝑥,𝑤) = E[𝑌 ∣ 𝑋 = 𝑥,𝑊 = 𝑤]

from observation data and then predicts

̂𝑆 (𝑥) = �̂�(𝑥, 1) − �̂�(𝑥, 0)

where we use the standard hat notation to denote estimated versions
of the underlying functions.

2.1.2. T-learner
The T-learner (two-learner) estimates

𝜇1(𝑥) = E[𝑌 (1) ∣ 𝑋 = 𝑥],

𝜇0(𝑥) = E[𝑌 (0) ∣ 𝑋 = 𝑥]

rom observed treatment data {(𝑋𝑖, 𝑌𝑖)}𝑊𝑖=1 and control data
(𝑋𝑖, 𝑌𝑖)}𝑊𝑖=0, respectively, and then predicts

𝜏𝑇 (𝑥) = �̂�1(𝑥) − �̂�0(𝑥).

.1.3. X-learner
The X-learner [16] estimates 𝜇1 and 𝜇0 as in the T-learner, and then

earns

1(𝑥) = E[𝑌 (1) − �̂�0(𝑋) ∣ 𝑋 = 𝑥],

0(𝑥) = E[�̂�1(𝑋) − 𝑌 (0) ∣ 𝑋 = 𝑥]

n the observed treatment and control data, respectively. The X-learner
hen predicts

𝜏𝑋 (𝑥) = 𝑔(𝑥)𝜏0(𝑥) + (1 − 𝑔(𝑥))𝜏1(𝑥)

here 𝑔 ∶ R𝑑 → [0, 1] is a weight function. The creators of the X-learner
emark that the treatment propensity function (3) often works well for
, as do the constant functions 1 and 0. In our implementation, we set
(𝑥) ≡ 1∕2.

Concerning this method, we note that it is also possible to directly
stimate 𝜏 from

(𝑋𝑖, 𝑌𝑖 − �̂�0(𝑋𝑖))}𝑊𝑖=1 ∪ {(𝑋𝑖, �̂�1(𝑋𝑖) − 𝑌𝑖)}𝑊𝑖=0

r, using �̂�(𝑥,𝑤) from the S-learner approach, with

(𝑋𝑖, 𝑌𝑖 − �̂�(𝑋𝑖, 0))}𝑊𝑖=1 ∪ {(𝑋𝑖, �̂�(𝑋𝑖, 1) − 𝑌𝑖)}𝑊𝑖=0.

e find that these alternate approaches work well in practice and
bviate the need to estimate or fix 𝑔.

.1.4. R-learner
The R-learner [5] leverages Robinson’s decomposition [17] that led

o Robin’s reformulation [18] of the cate function as the solution to the
ptimization problem

𝜏(⋅) = arg min
𝜏

{E(𝑋,𝑊 ,𝑌 )∼𝑃(𝑋,𝑊 , 𝑌 )} (5)

where

(𝑥,𝑤, 𝑦) = |

|

|

(

𝑦 − 𝑚(𝑥)
)

−
(

𝑤 − 𝑒(𝑥)
)

𝜏(𝑥)||
|

2

or 𝑚(⋅) and 𝑒(⋅) as defined in (3) and (4), respectively. In practice,
regularized, empirical version of (5) is minimized via a two-step

rocess: (I) cross-validated estimates �̂� and 𝑒 are obtained for 𝑚 and 𝑒,
espectively, and then (II) the empirical loss is evaluated using folds of
he data not used for estimating �̂� and 𝑒, and then minimized. The au-
hors Nie & Wager note that the structure of the loss function eliminates
orrelations between 𝑚 and 𝑒 while allowing one to separately specify
he form of 𝜏 through the choice of optimization method. In this paper,
he only R-learner we use is the causal forest as implemented with
eneralized random forests [19] using the default options, including
onest splitting [20].
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Table 1
We report the average and standard deviation of the mean squared error over 100 independent trials run using setup A. To generate the feature maps (for entries not corresponding
to the initial, untransformed features), Algorithm 1 was run with parameters: cohort size 𝑐 = 4, progenitors 𝓁 = 2, number of cohorts 𝑔 = 5, representation dimensionality 𝑚 = 20,
and fitness function parameter 𝑘 = 10. Values for the activation function 𝑎(⋅) and tuning parameter 𝜆 ≥ 0 are reported on each line.

Causal learner Features avg. std. 𝑝-value Causal learner Features avg. std. 𝑝-value

Causal forest Initial 0.194 0.146 – T-L. w/ LGBM Initial 0.745 0.294 –
No fitness 0.137 0.108 6.0 ⋅ 10−13 No fitness 0.565 0.226 1.1 ⋅ 10−08

elu (𝜆 = 0) 0.134 0.105 1.9 ⋅ 10−13 elu (𝜆 = 0) 0.562 0.200 3.6 ⋅ 10−08

relu (𝜆 = 0) 0.150 0.110 5.3 ⋅ 10−08 relu (𝜆 = 0) 0.448 0.215 7.6 ⋅ 10−16

tanh (𝜆 = 0) 0.141 0.106 1.4 ⋅ 10−11 tanh (𝜆 = 0) 0.549 0.197 3.7 ⋅ 10−09

tanh (𝜆 = 1) 0.140 0.107 9.5 ⋅ 10−11 tanh (𝜆 = 1) 0.570 0.223 1.4 ⋅ 10−07

tanh (𝜆 = 10) 0.132 0.101 9.9 ⋅ 10−14 tanh (𝜆 = 10) 0.557 0.221 5.4 ⋅ 10−09

tanh (𝜆 = 100) 0.129 0.101 2.3 ⋅ 10−14 tanh (𝜆 = 100) 0.539 0.209 1.3 ⋅ 10−09

S-L. w/ LGBM Initial 0.133 0.071 – T-L. w/ Ridge Initial 0.815 0.334 –
No fitness 0.149 0.079 2.5 ⋅ 10−02 No fitness 0.383 0.200 1.5 ⋅ 10−30

elu (𝜆 = 0) 0.145 0.067 7.5 ⋅ 10−02 elu (𝜆 = 0) 0.355 0.199 1.9 ⋅ 10−29

relu (𝜆 = 0) 0.190 0.132 8.0 ⋅ 10−06 relu (𝜆 = 0) 0.278 0.422 4.3 ⋅ 10−18

tanh (𝜆 = 0) 0.137 0.070 5.3 ⋅ 10−01 tanh (𝜆 = 0) 0.354 0.194 6.5 ⋅ 10−31

tanh (𝜆 = 1) 0.141 0.074 1.6 ⋅ 10−01 tanh (𝜆 = 1) 0.371 0.212 2.0 ⋅ 10−31

tanh (𝜆 = 10) 0.145 0.085 1.3 ⋅ 10−01 tanh (𝜆 = 10) 0.360 0.208 2.6 ⋅ 10−34

tanh (𝜆 = 100) 0.140 0.061 2.2 ⋅ 10−01 tanh (𝜆 = 100) 0.341 0.199 1.7 ⋅ 10−33

S-L. w/ Ridge Initial 0.099 0.073 – X-L. w/ LGBM Initial 0.453 0.189 –
No fitness 0.089 0.070 4.6 ⋅ 10−05 No fitness 0.350 0.167 1.6 ⋅ 10−07

elu (𝜆 = 0) 0.087 0.060 2.7 ⋅ 10−04 elu (𝜆 = 0) 0.351 0.150 2.9 ⋅ 10−07

relu (𝜆 = 0), 0.098 0.078 8.0 ⋅ 10−01 relu (𝜆 = 0) 0.317 0.175 3.4 ⋅ 10−09

tanh (𝜆 = 0) 0.087 0.061 1.5 ⋅ 10−04 tanh (𝜆 = 0) 0.352 0.149 3.1 ⋅ 10−07

tanh (𝜆 = 1) 0.087 0.064 5.5 ⋅ 10−06 tanh (𝜆 = 1) 0.357 0.158 1.3 ⋅ 10−06

tanh (𝜆 = 10) 0.086 0.062 9.3 ⋅ 10−06 tanh (𝜆 = 10) 0.355 0.190 3.3 ⋅ 10−06

tanh (𝜆 = 100) 0.085 0.063 1.4 ⋅ 10−08 tanh (𝜆 = 100) 0.335 0.146 2.6 ⋅ 10−09

X-L. w/ Ridge Initial 0.692 0.287 –
No fitness 0.336 0.188 3.3 ⋅ 10−29

elu (𝜆 = 0) 0.308 0.181 4. ⋅ 10−29
relu (𝜆 = 0) 0.257 0.427 1.6 ⋅ 10−14

tanh (𝜆 = 0) 0.309 0.170 3.2 ⋅ 10−31

tanh (𝜆 = 1) 0.324 0.192 2.0 ⋅ 10−30

tanh (𝜆 = 10) 0.310 0.182 3.8 ⋅ 10−34

tanh (𝜆 = 100) 0.304 0.211 4.6 ⋅ 10−33
Table 2
We report the average and standard deviation of the MSE taken over 100 independent trials run using setup C. Feature maps were again generated using Algorithm 1 with 𝑐 = 4,
= 2, 𝑔 = 2, 𝑚 = 20, and 𝑘 = 10, and values for 𝑎(⋅) and 𝜆 as reported in the table.
Causal learner Features avg. std. 𝑝-value Causal learner Features avg. std. 𝑝-value

Causal forest Initial 0.038 0.040 – T-L. w/ LGBM Initial 0.575 0.140 –
No fitness 0.028 0.027 1.5 ⋅ 10−04 No fitness 0.541 0.116 3.8 ⋅ 10−02

elu (𝜆 = 0) 0.028 0.026 2.2 ⋅ 10−04 elu (𝜆 = 0) 0.542 0.124 5.6 ⋅ 10−02

relu (𝜆 = 0) 0.031 0.027 2.0 ⋅ 10−02 relu (𝜆 = 0) 0.494 0.122 1.1 ⋅ 10−05

tanh (𝜆 = 0) 0.029 0.028 2.1 ⋅ 10−04 tanh (𝜆 = 0) 0.551 0.120 1.7 ⋅ 10−01

tanh (𝜆 = 1) 0.030 0.027 1.7 ⋅ 10−03 tanh (𝜆 = 1) 0.550 0.137 1.4 ⋅ 10−01

tanh (𝜆 = 10) 0.029 0.027 8.7 ⋅ 10−04 tanh (𝜆 = 10) 0.538 0.142 2.2 ⋅ 10−02

tanh (𝜆 = 100) 0.031 0.024 9.5 ⋅ 10−03 tanh (𝜆 = 100) 0.550 0.138 1.5 ⋅ 10−01

S-L. w/ LGBM Initial 0.225 0.068 – T-L. w/ Ridge Initial 0.181 0.074 –
No fitness 0.206 0.058 9.0 ⋅ 10−03 No fitness 0.117 0.074 5.4 ⋅ 10−22

elu (𝜆 = 0) 0.206 0.062 9.6 ⋅ 10−03 elu (𝜆 = 0) 0.121 0.063 2.1 ⋅ 10−25

relu (𝜆 = 0) 0.204 0.059 3.3 ⋅ 10−03 relu (𝜆 = 0) 0.080 0.045 2.6 ⋅ 10−29

tanh (𝜆 = 0) 0.208 0.063 1.2 ⋅ 10−02 tanh (𝜆 = 0) 0.133 0.076 7.2 ⋅ 10−18

tanh (𝜆 = 1) 0.214 0.070 1.5 ⋅ 10−01 tanh (𝜆 = 1) 0.114 0.067 4.0 ⋅ 10−31

tanh (𝜆 = 10) 0.206 0.059 1.3 ⋅ 10−02 tanh (𝜆 = 10) 0.116 0.062 3.9 ⋅ 10−25

tanh (𝜆 = 100) 0.209 0.058 3.4 ⋅ 10−02 tanh (𝜆 = 100) 0.113 0.065 1.9 ⋅ 10−29

S-L. w/ Ridge Initial 0.018 0.023 – X-L. w/ LGBM Initial 0.324 0.088 –
No fitness 0.018 0.024 7.5 ⋅ 10−02 No fitness 0.309 0.085 1.5 ⋅ 10−01

elu (𝜆 = 0) 0.018 0.023 3.2 ⋅ 10−01 elu (𝜆 = 0) 0.292 0.079 2.3 ⋅ 10−03

relu (𝜆 = 0) 0.020 0.025 2.3 ⋅ 10−03 relu (𝜆 = 0) 0.277 0.083 2.3 ⋅ 10−05

tanh (𝜆 = 0) 0.017 0.023 5.6 ⋅ 10−01 tanh (𝜆 = 0) 0.322 0.088 8.8 ⋅ 10−01

tanh (𝜆 = 1) 0.018 0.024 5.8 ⋅ 10−02 tanh (𝜆 = 1) 0.311 0.093 2.7 ⋅ 10−01

tanh (𝜆 = 10) 0.018 0.023 6.6 ⋅ 10−01 tanh (𝜆 = 10) 0.301 0.097 3.8 ⋅ 10−02

tanh (𝜆 = 100) 0.018 0.024 3.4 ⋅ 10−03 tanh (𝜆 = 100) 0.311 0.089 2.3 ⋅ 10−01

X-L. w/ Ridge Initial 0.168 0.069 –
No fitness 0.103 0.068 3.7 ⋅ 10−25

elu (𝜆 = 0) 0.108 0.061 1.9 ⋅ 10−27

relu (𝜆 = 0) 0.067 0.041 3. ⋅ 10−32
tanh (𝜆 = 0) 0.119 0.072 3.4 ⋅ 10−19

tanh (𝜆 = 1) 0.101 0.063 1.2 ⋅ 10−33

tanh (𝜆 = 10) 0.103 0.060 1.0 ⋅ 10−27

tanh (𝜆 = 100) 0.099 0.063 1.0 ⋅ 10−31
3
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2.2. Genetic and neuroevolutionary algorithms

Holland introduced genetic algorithms [6] as a nature-inspired ap-
proach to optimization. Generally speaking, these algorithms produce
successive generations of candidate solutions. New generations are
formed by selecting the fittest members from the previous generation
and performing cross-over and/or mutation operations on them to
produce offspring. Evolutionary algorithms encompass extensions and
generalizations to this approach including memetic algorithms [21]
that perform local refinements, genetic programming [22] that acts
on programs represented as trees, and evolutionary programming [23]
and strategies [24,25] that operate on more general representations.
When such methods are applied specifically to the design and training
of neural networks, they are commonly known as neuroevolutionary
algorithms. See Stanley et al. [26] for a comprehensive survey. In the
next section, we describe a specific neuroevolutionary strategy for fea-
ture engineering. As opposed to other strategies for global optimization,
genetic algorithms are readily parallelized and allow us to generate new
candidate solutions in a logical way from two good existing solutions.

3. Methodology

In this section, we describe how we form our feature mapping 𝛷 ∶
R𝑑 → R𝑚. To generate a single candidate solution, we train a shallow
neural network to predict 𝑌 from 𝑋 and extract an intermediate layer
of this network. Each candidate map created in this way should yield a
representation as functionally useful for predicting 𝑌 as 𝑋 is. We then
iteratively evolve cohorts of parameter sets for such maps to create a
representation that carries the least amount of useful information for
predicting the treatment assignment 𝑊 .

3.1. Candidate solutions

We consider neural networks 𝑓𝛩 ∶ R𝑑 → R of the form

𝑓𝛩(𝑥) = 𝑀2 ⋅ 𝑎(𝑀1 ⋅ 𝑥 + 𝑏1) + 𝑏2 (6)

where 𝑀1 ∈ R𝑚×𝑑 , 𝑀2 ∈ R1×𝑚 are real-valued matrices (weights),
𝑏1 ∈ R𝑚 and 𝑏2 ∈ R1 are vectors (biases), and 𝑎(⋅) is a nonlinear
activation function applied component-wise. We let 𝛩 = (𝑀1,𝑀2, 𝑏1, 𝑏2)
denote the parameters for 𝑓𝛩. Though 𝑓𝛩 is decidedly not a deep neural
network, we note that, as a neural network with a single hidden layer,
it remains a universal function approximator in the sense of Hornik
et al. [27]. Optimizing the network (6) in order to best predict 𝑌 from
𝑋 seeks the solution

𝛩∗ = arg min
𝛩

E |

|

𝑌 − 𝑓𝛩(𝑋)|
|

2 . (7)

Given parameters 𝛩 for the network (6), we let 𝛷𝛩 ∶ R𝑑 → R𝑚 given
by

𝛷𝛩(𝑥) = 𝑎(𝑀1 ⋅ 𝑥 + 𝑏1) (8)

denote the output of the hidden layer. We restrict to candidate feature
mappings of this form. As these mappings are completely characterized
by their associated parameters, we define a fitness function and evolu-
tionary algorithm directly in terms of parameter sets 𝛩 in the following
subsections.

3.2. Fitness function

For parameters 𝛩 near the optimum (7), 𝛷𝛩(𝑋) should be approx-
imately as useful as 𝑋 for learning a functional relationship with 𝑌 .
However, for some values of 𝛩, the mapped features 𝛷𝛩(𝑋) may carry
information useful for predicting 𝑊 , and for this reason we consider a
network 𝑔𝛹,𝛩 ∶ R𝑑 → [0, 1] given by

𝑔 (𝑥) = 𝜎(𝑀 ⋅ 𝛼(𝑀 ⋅𝛷 (𝑥) + 𝑏 ) + 𝑏 ) (9)
4

𝛹,𝛩 4 3 𝛩 3 4 𝑎
Fig. 1. We use superscripts to denote the coordinates of vectors, so that 𝑥 =
(𝑥1 , 𝑥2 ,… , 𝑥𝑑 ). The arrows connecting the 𝑥𝑖 to the 𝛷𝛩(𝑥)𝑗 represent the map 𝛷𝛩
as in (8); these, in addition to the ones joining the 𝛷𝛩(𝑥)𝑗 to 𝑦, represent 𝑓𝛩 given
explicitly in (6); the original arrows along with the dashed arrows on paths from 𝛷𝛩(𝑥)
to 𝑤 represent 𝑔𝛹,𝛩 as in (9).

where 𝑀3 ∈ R𝑘×𝑚 and 𝑀4 ∈ R1×𝑘 are weights, 𝑏3 ∈ R𝑘 and 𝑏4 ∈ R
are biases, 𝛼 is a nonlinear activation function applied component-wise,
and 𝜎(𝑥) = (1 + exp(−𝑥))−1 denotes the sigmoidal activation function.
In this case, 𝛹 = (𝑀3,𝑀4, 𝑏3, 𝑏4) denotes the collection of learnable
arameters. For a tunable hyperparameter 𝜆 ≥ 0, we define the fitness
f a parameter set 𝛩 to be

𝜆(𝛩) = min
𝛹

𝐻(𝑊 ,Bernoulli(𝑔𝛹,𝛩(𝑋))) − 𝜆 ⋅ E |

|

𝑌 − 𝑓𝛩(𝑋)|
|

2 , (10)

here 𝐻(𝑉1, 𝑉2) denotes the cross-entropy between the random vari-
bles 𝑉1 and 𝑉2. In this way, we express a preference for representations
𝛩(𝑋) that are less useful for predicting 𝑊 and (when 𝜆 ⪈ 0) penalize
ny that lost information for predicting 𝑌 . For a schematic of these
rchitectures, please see Fig. 1.

.3. Evolutionary algorithm

We now describe a method to generate and evolve a cohort of
andidate parameter sets 𝛩 intended to seek a parameter set 𝛩∗ such
hat 𝛷𝛩∗(𝑋) is nearly as useful for predicting 𝑌 as 𝑋 is and, among
uch representations, 𝛷𝛩∗(𝑋) is least useful for predicting 𝑊 .

Given training data (𝑋𝑖,𝑊𝑖, 𝑌𝑖) ∼i.i.d. 𝑃 for 1 ≤ 𝑖 ≤ 𝑛, we first
artition the data into training and validation sets. We form an initial
ohort of 𝑐 candidates independently as follows. For 1 ≤ 𝑗 ≤ 𝑐, we
andomly instantiate 𝛩𝑗 using Glorot normal initialization [28] for the
eights and zeros for the biases and then apply batch-based gradient
escent on the training set to seek the solution to (7). In particular,
e use the Adam optimizer [29] that maintains parameter-specific

earning rates [30, cf. AdaGrad] and allows these rates to sometimes in-
rease [31, cf. Adadelta] by adapting them using the first two moments
rom recent gradient updates. We use Tikhonov regularization [32] for
he weights and apply a dropout layer after the activation function 𝑎(⋅)
o prevent overfitting. We experimented with hyperbolic tangent and
ectified [33] and exponential [34] linear unit activation functions for
in 𝛷 . We use hyperbolic tangent for 𝛼 in 𝑔 .
𝛩 𝛹,𝛩
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For each constituent 𝛩𝑗 in the cohort, we then initialize and train a
etwork 𝑔𝛹,𝛩𝑗

as in (9) to seek 𝛹𝑗 = arg min𝛹 𝐻(𝑊 ,Bernoulli(𝑔𝛹,𝛩𝑗
(𝑋)))

n the training set and then evaluate

(𝑊 ,Bernoulli(𝑔𝛹𝑗 ,𝛩𝑗
(𝑋))) − 𝜆 ⋅ E |

|

|

𝑌 − 𝑓𝛩𝑗
(𝑋)||

|

2

mpirically on the validation set to estimate 𝜇𝜆(𝛩𝑗 ). We then use the 𝓁
ittest members of the current cohort to form a new cohort as follows.
or each of the

(𝓁
2

)

pairings, we apply Montana and Davis’s node-based
rossover [35] method to the parameters 𝑀1 and 𝑏1 that we use to
orm 𝛷. This amounts to forming a new 𝛷 by randomly selecting one
f the two parents and using that parent’s mapping for each coordinate.
hus, the new 𝑀1 and 𝑏1 are selected in a row-wise manner from the
orresponding rows of the parents, and then the new 𝑀2 and 𝑏2 are
andomly initialized and a few steps of optimization are performed to
orm the offspring candidate. The next generation then consists of the
est performing candidate from the previous generation,

(𝓁
2

)

candidates
ormed by crossing the best 𝓁 candidates of the previous generation,
nd 𝑐 − 1 −

(𝓁
2

)

entirely new candidates generated from scratch.
We summarize our approach using pseudo-code in Algorithm 1.

.4. Remark on linearity

Due to our choice of representation 𝛷 in (8), after training the
etwork (6) to optimize (7), we expect the relationship between the
earned features 𝛷(𝑋) and the outcome 𝑌 to be approximately linear.
n particular, we will have 𝑌 ≈ 𝑀2 ⋅ 𝛷(𝑋) for 𝑀2 as given in (6). For
his reason, the causal meta-learners trained using a linear regression
ase learner may benefit more extensively from using the transformed
eatures instead of the original features, especially in cases where
he relationship between the original features and outcomes is not
ell-approximated as linear. We provide specific examples in the next

ection involving meta-learners trained with ridge regression.

.5. Remark on our assumptions

Through our method of constructing features, we intend that {𝑌 (0),
(1)}⟂⟂𝑋 ∣ 𝛷(𝑋). This formalizes the notion that 𝛷(𝑋) should contain
ll the information in 𝑋 relevant for predicting 𝑌 . In order to then use
he represented features in place of the original features for learning the
ate, we also require that strong ignorability (as defined in Section 1)
olds for the represented features. This standard assumption is neces-
ary in order to be able to learn the cate from data. If 𝑋, 𝑊 , 𝑌 , and
(𝑋) jointly respect the graph

𝑋

𝛷(𝑋)

𝑊 𝑌

then it follows [4, §3.3] that {𝑌 (0), 𝑌 (1)}⟂⟂ (𝑋,𝑊 ) ∣ 𝛷(𝑋), as desired.

. Ablation study on generated data

Due to the fundamental challenge of causal inference (namely, that
he counterfactual outcome cannot be observed, even in controlled
xperiments), it is common practice to compare approaches to cate
stimation on artificially generated datasets that allow the cate to be
alculated directly for evaluative purposes. In this section, we perform
xperiments using two such data generation mechanisms from Nie &
ager’s paper [5] that we now describe.3 Both setups provide a joint

3 Nie & Wager’s paper included four setups, namely A–D; however setup B
odeled a controlled randomized trial and setup D had unrelated treatment

nd control arms. In both cases, the original features are already independent
rom 𝑊 , so that the two aims of our representation are already satisfied.
5

𝑌

Data: training  = {(𝑋𝑖,𝑊𝑖, 𝑌𝑖)}𝑖∈𝑇 and validation
 = {(𝑋𝑖,𝑊𝑖, 𝑌𝑖)}𝑖∈𝑉 datasets drawn i.i.d. from 𝑃
respecting the graphical model (1);

hyperparameters: 𝑐 cohort size, 𝓁 number of members involved
in forming the next generation, 𝑔 number of generations,
𝑚 dimensionality of the latent representation, 𝑘 dimensionality
of the final hidden layer in (9), choice of activation function
𝑎(⋅) for (8), 𝜆 ≥ 0 weighting parameter for the fitness function
Result: parameterized function 𝛷𝛩∗

∶ R𝑑 → R𝑚 such that
models for the cate learned using the transformed
training data {(𝛷(𝑋𝑖),𝑊𝑖, 𝑌𝑖)}𝑖∈ perform better than
those learned on the original dataset 

for 𝑗 = 1,… , 𝑐 do
Optimize a parameter set 𝛩𝑗 to seek (7) on training batches
from a random initialization;

end
Form the first generation 1 = {𝛩𝑗}𝑗=1,…,𝑐 ;
for 𝑡 = 2,… , 𝑔 do #form the next generation

Initialize new generation 𝑡 = {argmax𝛩∈𝑡−1 𝜇𝜆(𝛩)} with
the best-performing candidate from the previous
generation;
for unique pairs {𝛩𝑗 , 𝛩𝑘} formed from the top 𝓁 candidates
from 𝑡−1 do #form new candidates using crossover

Initialize 𝑀1 ∈ R𝑚×𝑑 and 𝑏1 ∈ R𝑚 as the 𝑀1 and 𝑏1 from
𝛩𝑗 ;
for 𝜅 = 1,… , 𝑚 do

Let 𝜉 ∼ Bernoulli(1∕2);
if 𝜉 = 1 then replace the 𝜅th row of 𝑀1 and the 𝜅th
component of 𝑏1 with those from 𝛩𝑘;

end
Randomly initialize 𝑀2 and 𝑏2 and take optimization
steps towards the solution to (7);

Add 𝛩 = (𝑀1,𝑀2, 𝑏1, 𝑏2) to 𝑡
end
while |

|

𝑡|| < 𝑐 do
Optimize a parameter set 𝛩 to seek (7) on training
batches from a random initialization;

Add 𝛩 to 𝑡
end

end
Let 𝛩∗ = argmax𝛩∈𝑔 𝜇𝜆(𝛩);
return 𝛷𝛩∗

as in (8)

Algorithm 1: Neuroevolutionary Feature Engineering for Causal
Inference

distribution satisfying the graph (1) and allow us to explicitly calculate
the cate in order to evaluate algorithm performance. For the vector-
valued random variable 𝑋 ∈ R𝑑 , we let 𝑋𝑖𝑗 denote 𝑗th component
(1 ≤ 𝑗 ≤ 𝑑) of the 𝑖th sample (1 ≤ 𝑖 ≤ 𝑛). The specifics for both setups
are given as follows.

Setup A
For 𝜎 > 0 and an integer 𝑑 > 0, we let

𝑋𝑖 ∼i.i.d. Uniform([0, 1]𝑑 )

nd 𝑊𝑖 ∣ 𝑋𝑖 ∼ Bernoulli(𝑒(𝑋𝑖)),

here 𝑒(𝑋𝑖) = max{0.1,min{sin(𝜋𝑋𝑖1𝑋𝑖2), 0.9}} and
( 2)
𝑖 ∣ 𝑋𝑖,𝑊𝑖 ∼  𝑏(𝑋𝑖) + (𝑊𝑖 − 0.5)𝜏(𝑋𝑖), 𝜎 ,
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where 𝑏(𝑋𝑖) = sin(𝜋𝑋𝑖1𝑋𝑖2) + 2(𝑋𝑖3 − 0.5)2 +𝑋𝑖4 + 0.5𝑋𝑖5. The true cate
for this setup is then 𝜏(𝑋𝑖) = (𝑋𝑖1 +𝑋𝑖2)∕2. In this paper, we let 𝑑 = 24,
𝑛 = 200, and 𝜎 = 1.

Setup C
For 𝜎 > 0 and an integer 𝑑 > 0, we let

𝑋𝑖 ∼i.i.d. 𝑑 (0⃗, 𝐼𝑑×𝑑 )

and 𝑊𝑖 ∣ 𝑋𝑖 ∼ Bernoulli(𝑒(𝑋𝑖)),

where in this case 𝑒(𝑋𝑖) = (1 + exp(𝑋𝑖2 +𝑋𝑖3))−1 and

𝑌𝑖 ∣ 𝑋𝑖,𝑊𝑖 ∼ 
(

𝑏(𝑋𝑖) + (𝑊𝑖 − 0.5)𝜏(𝑋𝑖), 𝜎2
)

,

here now 𝑏(𝑋𝑖) = 2 log(1 + exp(𝑋𝑖1 + 𝑋𝑖2 + 𝑋𝑖3)). For this model, we
ave 𝜏(𝑋𝑖) = 1. In our example, we let 𝑑 = 12, 𝑛 = 500, and 𝜎 = 1.

.1. Comparison methodology

For each data generation method, we ran 100 independent trials.
ithin each trial, we simulated a dataset of size 𝑛 and randomly

artitioned it into training, validation, and testing subsets at a 70%-
5%–15% rate. We trained causal inference methods on the training
et, using the validation data to aid the training of some base estimators
or the meta-learners, and predicted on the test dataset. We then
eveloped a feature map using the training and validation data as
escribed in the previous section, applied this map to all features, and
epeated the training and testing process using the new features.

We compared feature maps generated using tanh, relu, and elu
unctions for the activation 𝑎(⋅) and various choices of fitness parameter
≥ 0. To determine the impact of the fitness selection process, we also

earned a feature transformation that did not make use of the fitness
unction at all. In effect, it simply generated a single candidate mapping
nd used it to transform all the features (without any cross-over or
urther mutation). Features developed in this way are described as ‘‘no
itness’’ in the tables.

To estimate the cate, we used the causal forest with default options
as found in R’s grf package), and the S-, T-, and X-learners as described
n Section 2.1 with two base learners. The first base learner is Light-
BM [36], a boosted random forest algorithm that introduced novel

echniques for sampling and feature bundling. The second is a cross-
alidated ridge regression model (as found in scikit-learn) that performs
ultiple linear regression with an 𝐿2 normalization on the weights.

.2. Results

We report performance results for setup A in Table 1 and results
or setup C in Table 2. For each learning approach, we compare testing
erformance using our features versus the initial features. We report the
-value from a paired t-test for the equality of means for the MSE perfor-
ance obtained using the initial features vs. the transformed features.
e find that our features result in significantly improved performance

or a variety of different cate learners. In many cases, adjusting the
uning parameter 𝜆 to a value greater than zero offers a performance
oost, so that it can be useful to protect against the loss of information
or predicting the outcome during the feature engineering process.
one of the activation functions (tanh/elu/relu) perform uniformly
etter across all trials. In some cases, we fail to see any improvement
rom our approach. For the single learner with ridge regression on setup
, we find no improvement, and for the single learner with LightGBM

n setup A, we find that using engineered features may lead to worse
erformance. Performance is otherwise promising.

In summary, we find that our feature transformation method im-
roves the performance of multiple standard estimators for the cate
nder two challenging data generation models.
6

i

Fig. 2. We plot estimated realized and predicted average treatment effects versus the
quintiles of predicted treatment effect (5 bins) for a causal forest using (2(a)) the initial
features and (2(b)) the features transformed using our method (with hyperbolic tangent
for 𝑎(⋅) and 𝜆 = 0). In order to estimate realized treatment effect within each bin, we
ake the difference between the average outcome for persons randomly assigned to the
xperimental group and the average outcome for persons randomly assigned to the
ontrol group.

. Application to econometric data

In this section, we apply our feature engineering method to the
aLonde dataset [37,38] chronicling the results of an experimental
tudy on temporary employment opportunities. The dataset contains
nformation from 445 participants who were randomly assigned to
ither an experimental group that received a temporary job and career
ounseling or to a control group that received no assistance. Features
nclude age and education (in years), earnings in 1974 (in $, prior
o treatment), and indicators for African–American heritage, Hispanic–
merican heritage, marital status, and possession of a high school
iploma. We consider the outcome of earnings in 1978 (in $, after
reatment).

We cannot determine true average treatment effects based on
ndividual-level characteristics (i.e. the true cate values) for real life
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experimental data as we can with the synthetic examples of the pre-
vious section. Instead, we evaluate performance by comparing the
average realized treatment effect and average predicted treatment
effect within bins formed by sorting study participants according to
predicted treatment effect as demonstrated in Fig. 2. Applying the
causal forest predictor to the original features results in a root mean
square difference between the average predicted and realized treatment
effects of 5099.90. If the transformed features are used instead, this
discrepancy improves to 2593.23.

From a practical perspective, one may learn the cate in order to
select a subset of people for whom a given intervention has an expected
net benefit (and then deliver that intervention only to persons predicted
to benefit from it). When we focus on the 20% of people predicted to
benefit most from this treatment, we find that the estimated realized
benefit for those chosen using the transformed features ($3585.54) is
much greater than the benefit for those chosen using the original fea-
ture set ($811.94). This can be seen visually in Fig. 2 by comparing the
estimated realized average treatment effect for bin #5 (the rightmost
bin) in both plots.

6. Conclusions

Causal inference, especially on real life datasets, poses significant
challenges but offers a crucial avenue for predicting the impact of po-
tential interventions. Learned feature representations help us to better
infer the conditional average treatment effect, improving our ability to
individually tailor predictions and target subsets of the general popu-
lation. In this paper, we propose and validate a novel representation-
based method that uses a neuroevolutionary approach to remove in-
formation from features irrelevant for predicting the outcome. We
demonstrate that this method can yield improved estimates for hetero-
geneous treatment effects on standard synthetic examples and illustrate
its use on a real life dataset. We believe that representational learning is
particularly well-suited for removing extraneous information in causal
models and we anticipate future research in this area.
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Appendix. Implementation details

All numerical experiments were performed on a 2020 MacBook
Pro (Apple M1 Chip; 16 GB LPDDR4 Memory) with Python 3.7.7
and R 3.6.0. We used Python packages (versioning in parentheses)
Keras (1.0.8), LightGBM (3.1.1), Matplotlib (3.3.4), Numpy (1.20.2),
Pandas (1.2.4), rpy2 (2.9.4), Scikit-learn (0.24.2), Scipy (1.6.2),
statsmodels (0.13.2), Tensorflow (2.0.0), and XGBoost (1.3.3), along
with the R package grf (1.2.0).
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