US 20200320382A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2020/0320382 Al

Burkhart et al.

(54)

(71)
(72)

(73)

@
(22)

(1)

DIGITAL EXPERIENCE ENHANCEMENT
USING AN ENSEMBLE DEEP LEARNING

MODEL
Applicant:

Inventors:

Assignee:
Appl. No.:

Filed:

Adobe Inc., San Jose, CA (US)
Michael Craig Burkhart, San Jose,
CA (US); Kourosh Modarresi,
Sunnyvale, CA (US)

Adobe Inc., San Jose, CA (US)
16/375,627

Apr. 4, 2019

Publication Classification

Int. CL.
GO6N 3/08 (2006.01)
GO6N 20/20 (2006.01)

100
.\‘

126 —

Z

43) Pub. Date: Oct. 8, 2020
(52) U.S. CL
CPC v GO6N 3/08 (2013.01); GO6N 20/20
(2019.01)
(57) ABSTRACT

A digital experience enhancement system includes an
ensemble deep learning model that includes an estimator
ensemble and a neural network. The ensemble deep learning
model is trained to generate a digital experience enhance-
ment recommendation from an enhancement request. The
ensemble deep learning model receives the enhancement
request, which is input to the estimator ensemble. The
estimator ensemble uses various different machine learning
systems to generate estimator output values. The neural
network uses the estimator output values from the estimator
ensemble to generate a digital experience enhancement
recommendation. The digital experience generation system
then uses this digital experience enhancement recommen-
dation to enhance the digital experience.

/~116

3 YOUR STREAMING MOVIE SOURCE

128 —

Z

™ We Recommend:

Vacation Travels, Episode 1 }

Computing Device 102

. N
Digital Experience Generation
System 104

Digital Experience
Enhancement System 122

Ensembie Deep Learning
Modet 124

N

-

(

Content 106)

™

Network
118

Patent Application Publication Oct. 8,2020 Sheet 1 of 7 US 2020/0320382 A1

100
T‘

116

126 —<
> YOUR STREAMING MOVIE SOURCE

128 —i]
™ We Recommend:

Vacation Travels, Episode 1

—
— -
- — —

e —

— —

s ™\
Digital Experience Generation

System 104

Digital Experience
Enhancement System 122

Model 124

[Ensemble Deep Leaming}

(Content 106) \\

Network
118

Patent Application Publication Oct. 8,2020 Sheet 2 of 7 US 2020/0320382 A1

122
\

Enhancement Request
208

[Ensemble Deep
Learning Model 124

(Estimator Ensemble 202 h
4 4 N)
Singular Value Neighborhood _—
" . Factorization
Decomposition And Clustering Estimator(s) 216
\Estimator(s) 212 \Estimator(s) 214 L ==
((Variational Y[A
Time-aware Autoencodaer Gradient Boosting
Estimator(s) 220 Estimator(s) 222 Estimator{s) 218
\,, \, \,
\,
Estimator Qutput
Values 210
[Neural Network 204]
\|
\J
Digital Experience
Enhancement

Recommendation 206

Patent Application Publication Oct. 8,2020 Sheet 3 of 7 US 2020/0320382 A1

300
\

nnnnin, atnanass natnonns. wostvonns sosptvonn atatsoss soptaonos woptaosse sosptaons sasotoose soaoasass aoaootoe,

(Training Stage 1 302 I

|)

I Training (A

Data Set 1 I

I 304 Estimator Ensemble 202 I

| >

|) |

o o
Estimator Qutput

Values 210

(1 —Traﬁi.ng-gag-e_z. E 1 —\I
Y

I Training I

I Data Set 2 Neural Network 204

| b '

T |

Digital Experience
Enhancement
Recommendation 206

Patent Application Publication

Oct. 8,2020 Sheet 4 of 7

400
w Hidden
input Layer
Layer 406
404
Estimator Output -
Values 210

500
j‘ Hidden
Input Layer
Layer 5086
504
/
Estimator Output .
Values 210
Y
502

US 2020/0320382 Al
Output
Layer mapping and
408 Normalization
Layer
410

Digital Experience
Enhancement
Recommendation
206

Output
Layer
508

Digital Experience
Enhancement
Recommendation
206

Patent Application Publication Oct. 8,2020 Sheet 5 of 7 US 2020/0320382 A1

600
N

602
Receive a request for a recommendation to enhance a digital
experience for a user, the request including an indication of past
user interactions of the user with the digital experience

604
Generate, using an estimator ensembie and based on the
indication of past user interactions, multiple estimation values

estimation values, the recommendation to enhance the digital
expetience for the user

Y

608
Enhance the digital experience based on the recommendation

610
Display the enhanced digital experience

606
{ Generate, using a neural network and based on the multiple }

Patent Application Publication Oct. 8,2020 Sheet 6 of 7 US 2020/0320382 A1

700
N

02
Obtain a first training data set that includes, for each of multiple

users, values associated with the user for particular items

'

704
{Train, using the first training data set, each of muitiple estimators

in an estimator ensembie

WW

Y

706
Obtain a second training data set that includes, for each of the
multiple users, values associated with the user for pariicular items

W

y

training data set, multiple estimation values

l

~
710
Train, using the multiple estimation values, a neural network to
g

~
708
Generate, using the estimator ensemble and based on the second

enerate a recommendation to enhance the digital experience for
the user

i

712
{ Enhance, using the recommendation, the digital experience for

the user

Zig. 7

Patent Application Publication

800 —\

Oct. 8,2020 Sheet 7 of 7

Platform 81

[Resources 818)

e

td

N\

(Computing Device 802
Processing Computer-readable
System 804 Media 806

Hardware Memory/
Elements 810 Storage 812
([Digital Experience
/O
Interfaces 808 Enhancement
=== { System 122
\,,

7.

US 2020/0320382 Al

US 2020/0320382 Al

DIGITAL EXPERIENCE ENHANCEMENT
USING AN ENSEMBLE DEEP LEARNING
MODEL

BACKGROUND

[0001] As computer technology has advanced computers
have become increasingly commonplace in our lives. With
this increased presence in our lives, developers and design-
ers strive to provide the best digital experience they can for
each user. The digital experience for a user refers to the
information that the computer provides to the user and the
manner in which that information is provided to the user. For
example, the digital experience can include making recom-
mendations for content the user may enjoy (e.g., movies,
music, books), providing offers or promotions to the user,
the manner in which a web site is displayed (e.g., the colors
used, the fonts used), and so forth.

[0002] Providing the best digital experience for each user
is very beneficial for the users because it provides the users
with the digital experience that they want. However, current
attempts by designers and developers to provide the best
digital experience they can for each user have not been
without their problems. One such problem is the accuracy of
success in creating such digital experiences is very low,
which leads to poor digital experiences for the users. Such
poor digital experiences can result in user frustration with
their computers and service providers.

SUMMARY

[0003] To mitigate the problem of poor digital experiences
being provided to users, the digital experience for a user is
enhanced based on past interactions of the user with the
digital experience. A request for a recommendation to
enhance the digital experience for the user is received, the
request including an indication of past user interactions of
the user with the digital experience. Multiple estimation
values are generated, using an estimator ensemble and based
on the indication of past user interactions. At least one of the
multiple estimation values is generated by each of a singular
value decomposition estimator, a neighborhood or clustering
estimator, a factorization estimator, a time-aware estimator,
a variational autoencoder estimator, and a gradient boosting
estimator included in the estimator ensemble. The recom-
mendation to enhance the digital experience for the user is
generated, using a neural network, based on the multiple
estimation values. The digital experience is enhanced based
on the recommendation, and the enhanced digital experience
is displayed.

[0004] Inone or more implementations, an ensemble deep
learning model is trained to generated recommendations to
enhance the digital experience for a user. A first training data
set is obtained, the first training data set including, for each
of multiple users, values associated with the user for par-
ticular items. The estimators in an estimator ensemble are
each trained, using the first training data set, to generate an
estimation value. The estimators in the estimator ensemble
include a singular value decomposition estimator, a neigh-
borhood or clustering estimator, a factorization estimator, a
time-aware estimator, a variational autoencoder estimator,
and a gradient boosting estimator. A second training data set
is obtained that includes, for each of the multiple users,
values associated with the user for particular items. Multiple
estimation values are generated, using the estimator

Oct. 8, 2020

ensemble, based on the second training data set. A neural
network is trained, using the multiple estimation values, to
generate a recommendation to enhance the digital experi-
ence for the user. The digital experience is enhanced using
the recommendation.

[0005] This Summary introduces a selection of concepts in
a simplified form that are further described below in the
Detailed Description. As such, this Summary is not intended
to identify essential features of the claimed subject matter,
nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The detailed description is described with refer-
ence to the accompanying figures. Entities represented in the
figures may be indicative of one or more entities and thus
reference may be made interchangeably to single or plural
forms of the entities in the discussion.

[0007] FIG. 1 is an illustration of a digital medium envi-
ronment in an example implementation that is operable to
employ the digital experience enhancement using an
ensemble deep learning model techniques described herein.
[0008] FIG. 2 is an illustration of an example architecture
of a digital experience enhancement system.

[0009] FIG. 3 illustrates an example of training the
ensemble deep learning model.

[0010] FIG. 4 illustrates an example of a neural network.
[0011] FIG. 5 illustrates another example of a neural
network.

[0012] FIG. 6 is a flow diagram depicting a procedure in

an example implementation of digital experience enhance-
ment using an ensemble deep learning model.

[0013] FIG. 7 is a flow diagram depicting a procedure in
an example implementation of digital experience enhance-
ment using an ensemble deep learning model.

[0014] FIG. 8 illustrates an example system including
various components of an example device that can be
implemented as any type of computing device as described
and/or utilized with reference to FIGS. 1-7 to implement
aspects of the techniques described herein.

DETAILED DESCRIPTION

[0015] Overview

[0016] Digital experience enhancement using an ensemble
deep learning model is discussed herein. Generally, a digital
experience generation system creates content for display,
providing a digital experience to the user. The digital expe-
rience generation system leverages an ensemble deep learn-
ing model that generates recommendations to enhance the
digital experience. These enhancements can take various
forms, such as recommendations of movies to watch or
books to read, recommendations regarding whether to pres-
ent offers or advertisements to a user, recommendations for
web page display settings (e.g., fonts or colors), and so forth.
The ensemble deep learning model is trained to generate
recommendations to enhance digital experiences, and the
digital experience generation system uses the recommenda-
tions to enhance digital experiences.

[0017] More specifically, the digital experience enhance-
ment system includes an ensemble deep learning model that
is trained to generate a digital experience enhancement
recommendation from an enhancement request. The
ensemble deep learning model includes an estimator

US 2020/0320382 Al

ensemble and a neural network. The ensemble deep learning
model receives the enhancement request, which is input to
the estimator ensemble. The estimator ensemble uses vari-
ous different machine learning systems, referred to as esti-
mators, to generate estimator output values. The neural
network uses the estimator output values from the estimator
ensemble to generate a digital experience enhancement
recommendation. The digital experience generation system
then uses this digital experience enhancement recommen-
dation to enhance the digital experience.

[0018] The ensemble deep learning model can be trained
for use in various different digital experience use scenarios,
such as movie recommendations, book recommendations,
offer or promotion selection, web page display characteris-
tics, and so forth. The ensemble deep learning model is
trained in a two-stage process using a first training data set
and a second training data set. The first training data set and
the second training data set include training data specific to
the digital experience use scenario that the ensemble deep
learning model is being trained for. For example, if the
ensemble deep learning model is being trained to generate
movie recommendations, then each sample of training data
in the training data set includes data for multiple users and,
for each of the multiple users, ratings that the user gave
movies in the past. Each sample of training data in the
training data set also includes known ratings (the ground
truths) for multiple movies that the ensemble deep learning
model is generating a prediction for.

[0019] In a first stage, the estimators in the estimator
ensemble are trained using the first training data set. Each
estimator in the estimator ensemble generates an estimator
output value for each sample of training data. In the first
stage, for each estimator in the estimator ensemble, the
estimator output value from the estimator for a sample of
training data is compared to the ground truth for the sample
of training data. Each estimator includes various filters or
nodes with weights that are tuned (e.g., trained) to minimize
the loss between the ground truth for the sample of training
data and the estimator output value for the sample of training
data.

[0020] After the first stage is completed, a second stage is
performed. In the second stage, the second training data set
is provided to the estimators in the estimator ensemble, each
of which generates an estimator output value for each
sample of training data. However, rather than using those
estimator output values to train the estimators in the esti-
mator ensemble, in the second stage the estimator output
values are input to the neural network. For each sample of
training data in the second training data set, the neural
network generates a digital experience enhancement recom-
mendation based on the estimator output values generated
by the estimators in the estimator ensemble from the second
training data set. The neural network includes various filters
or nodes with weights that are tuned (e.g., trained) to
minimize the loss between the ground truth for the sample
of training data and the digital experience enhancement
recommendation for the sample of training data.

[0021] Training the ensemble deep learning model in two
stages improves the digital experience enhancement recom-
mendations provided by the ensemble deep learning model
as a result of the estimators in the estimator ensemble being
trained on a set of training data and the neural network being
trained on a set of estimator output values (which are
recommendations provided by the estimators). Each recom-

Oct. 8, 2020

mendations is trained to generate estimator output values
from the training data set, whereas the neural network is
trained to generate recommendations (digital experience
enhancement recommendations) from the estimators in the
estimator ensemble.

[0022] The estimator ensemble includes multiple estima-
tors of different classes or types, also referred to as estima-
tors. These classes of estimators include singular value
decomposition (SVD) estimators, neighborhood and clus-
tering estimators, time-aware estimators, factorization esti-
mators, gradient boosting estimators, and variational auto-
encoder (VAE) estimators.

[0023] SVD estimators refer to machine learning systems
that generate values (e.g., missing entries in a matrix) using
singular value decomposition. Neighborhood and clustering
estimators refer to machine learning systems that generate
values (e.g., missing entries in a matrix) based on the k
nearest entry values to the missing entry or on entry values
in a same cluster as the missing entry. Factorization estima-
tors refer to machine learning systems that decompose a
matrix into the product of two matrices of lower dimension-
ality.

[0024] Time-aware estimators refer to machine learning
systems that leverage time when generating estimator output
values. Various times can be leveraged, such as the time that
a value was provided by a user, a timespan between an
item’s availability (e.g., a movie’s release) and a user
providing a value for the item, and so forth.

[0025] Gradient boosting estimators refer to machine
learning systems that iteratively add weak learners to an
ensemble of machine learning systems. VAE estimators refer
to machine learning systems that learn parameters for an
autoencoder using variational inference.

[0026] The techniques discussed herein improve the
operation of a computing device by generating better rec-
ommendations on how to enhance the digital experience for
a user. The digital experience generation system leverages
these recommendations, providing enhanced digital experi-
ences that are better geared towards the user than conven-
tional techniques allow. This generation of enhanced digital
experiences provides for efficient use of computational
resources by, for example, reducing the amount of time
computational resources are expended in having a user
search for content he or she desires.

Term Descriptions

[0027] These term descriptions are provided for purposes
of example only and are not intended to be construed as
limiting on the scope of the claims.

[0028] The term “digital experience” refers to the user
interface that is presented to a user of a computing device.
The digital experience includes various different data dis-
played in different manners (e.g., in different locations, at
different times, in different fonts, in different colors, and so
forth).

[0029] The term “past user interactions” refers to interac-
tions a user has previously had with a digital experience.
These past user interactions can include links or web pages
selected by the user, preferences set by the user, content
(e.g., movie, book, music) recommendations made by the
user, feedback provided by the user, and so forth.

[0030] The term “item” refers to content that can be
displayed or otherwise presented to the user. This content
can take various forms, such as visual content, audible

US 2020/0320382 Al

content, and so forth. Examples of items include movies,
books, songs, offers, promotions, advertisements, web
pages, and so forth.

[0031] In the following discussion, an example environ-
ment is described that may employ the techniques described
herein. Example procedures are also described which may
be performed in the example environment as well as other
environments. Consequently, performance of the example
procedures is not limited to the example environment and
the example environment is not limited to performance of
the example procedures.

[0032]

[0033] FIG. 1 is an illustration of a digital medium envi-
ronment 100 in an example implementation that is operable
to employ the digital experience enhancement using an
ensemble deep learning model techniques described herein.
The illustrated environment 100 includes a computing
device 102, which may be configured in a variety of ways.
The computing device 102, for instance, may be configured
as a desktop computer, a server computer, a laptop computer,
a mobile device (e.g., assuming a handheld configuration
such as a tablet or mobile phone), a wearable device (e.g.,
augmented reality or virtual reality headsets), and so forth.
Thus, the computing device 102 may range from full
resource devices with substantial memory and processor
resources (e.g., personal computers, game consoles) to a
low-resource device with limited memory and/or processing
resources (e.g., mobile devices). Additionally, although a
single computing device 102 is shown, the computing
device 102 may be representative of a plurality of different
devices, such as multiple servers utilized by a business to
perform operations “over the cloud” as described in FIG. 8.

[0034] The computing device 102 is illustrated as includ-
ing a digital experience generation system 104. The digital
experience generation system 104 is implemented at least
partially in hardware of the computing device 102 to process
and transform content 106, which is illustrated as main-
tained in storage 108 of the computing device 102. Such
processing includes creation of the content 106, and render-
ing of the content 106 in a user interface 114 for output, e.g.,
by a display device 116 and/or playback by a speaker of the
computing device 102. The content 106 can take various
forms, such as image content, video content, mixed media
content, and so forth. The storage 108 can be any of a variety
of different types of storage, such as random access memory
(RAM), Flash memory, solid state drive, magnetic disk
drive, and so forth. Although illustrated as implemented
locally at the computing device 102, functionality of the
digital experience generation system 104 may also be imple-
mented in whole or part via functionality available via the
network 118, such as part of a web service or “in the cloud.”

[0035] The digital experience generation system 104 cre-
ates content for display on the user interface 114, providing
a digital experience to the user. The digital experience
generation system 104 leverages a digital experience
enhancement system 122 to facilitate creating the digital
experience. The digital experience enhancement system 122
includes an ensemble deep learning model 124 that provides
input to the digital experience generation system 104 regard-
ing how to enhance the digital experience for the user.
Although illustrated as implemented locally at the comput-
ing device 102, functionality of the digital experience
enhancement system 122 may also be implemented in whole

Example Environment

Oct. 8, 2020

or part via functionality available via the network 118, such
as part of a web service or “in the cloud.”

[0036] Enhancing the digital experience for the user refers
to making the digital experience better for the user. For
example, the ensemble deep learning model 124 can gen-
erate rankings for content (e.g., movies, music, books) that
the digital experience generation system 104 can display to
the user, can identify offers or promotions that the digital
experience generation system 104 can display to the user,
can identify the manner in which a web site provided by the
digital experience generation system 104 is displayed (e.g.,
the colors used, the fonts used), and so forth.

[0037] An example of the enhanced digital experience is
illustrated in FIG. 1. A web site or page with a title 126
providing a movie or television recommendation 128 is
displayed. The digital experience generation system 104
determines which of multiple movie or television programs
to recommend based on input from the digital experience
enhancement system 122. Furthermore, the font of the title
126 and/or recommendation 128 is also optionally deter-
mined by the digital experience generation system 104 based
on input from the digital experience enhancement system
122.

[0038] Digital Experience Enhancement System Architec-
ture
[0039] FIG. 2 is an illustration of an example architecture

of a digital experience enhancement system 122. The digital
experience enhancement system 122 includes an ensemble
deep learning model 124 that includes an estimator
ensemble 202 and a neural network 204. The ensemble deep
learning model 124 is trained to generate a digital experi-
ence enhancement recommendation 206 from an enhance-
ment request 208. Generally, the ensemble deep learning
model 124 receives the enhancement request 208, which is
input to the estimator ensemble 202. The estimator ensemble
202 uses various different estimators (machine learning
systems) to generate estimation values, illustrated as esti-
mator output values 210. The neural network 204 uses the
estimator output values 210 to generate the digital experi-
ence enhancement recommendation 206.

[0040] Machine learning systems refer to a computer
representation that can be tuned (e.g., trained) based on
inputs to approximate unknown functions. In particular,
machine learning systems can include a system that utilizes
algorithms to learn from, and make predictions on, known
data by analyzing the known data to learn to generate
outputs that reflect patterns and attributes of the known data.
For instance, a machine learning system can include deci-
sion trees, support vector machines, linear regression, logis-
tic regression, Bayesian networks, random forest learning,
dimensionality reduction algorithms, boosting algorithms,
artificial neural networks, deep learning, and so forth. Spe-
cific types of machine learning systems used by the
ensemble deep learning model 124 are discussed in more
detail below.

[0041] The machine learning systems include various fil-
ters or nodes with weights that, during training, are tuned
(e.g., trained) to minimize the loss between a known value
and a predicted value generated by the machine learning
system. Any of a variety of loss functions or algorithms can
be used to train the machine learning systems, such as a
cross-entropy loss function, a mean squared error, and so
forth. Specific loss functions used to train the machine

US 2020/0320382 Al

learning systems used by the ensemble deep learning model
124 are discussed in more detail below.

[0042] The ensemble deep learning model 124 is trained to
generate, given an enhancement request 208, a digital expe-
rience enhancement recommendation 206 for a particular
digital experience use scenario. The ensemble deep learning
model 124 can be used for various different digital experi-
ence use scenarios, such as movie recommendations, book
recommendations, offer or promotion selection, web page
display characteristics, and so forth. The ensemble deep
learning model 124 is trained in a two-stage process. In the
first stage, the estimators in the estimator ensemble 202 are
trained using a set of training data. In the second stage, an
additional set of training data is provided to the estimators
in the estimator ensemble 202. The estimators in the esti-
mator ensemble 202 generate estimator output values that
are used to train the neural network 204. This two-stage
process of training the ensemble deep learning model 124 is
discussed in more detail below.

[0043] The ensemble deep learning model 124 can be
viewed as solving a matrix completion problem. In one or
more implementations, a matrix M is an mxn matrix where
entry M, €{1, ..., s} contains user i’s value for an item j,
where values for items range from 1 to s (e.g., 1 being bad,
such as a single star or “hated” and 5 being good, such as 5
stars or “loved”). Some users will not have values for all
items, so the corresponding entries in the matrix M are
empty or zero. For example, the items j may be movies, the
matrix entries may be movie rating values, and the value s
may be 5. In this example, entry M, . €{1, ..., 5} contains
user i’s rating value for a movie j. By way of another
example, the items may be offers or promotions that were
previously presented to the user, the matrix entries may be
indications of whether those offers or promotions were
accepted by the user (e.g., 0 for accepted, 1 for not
accepted), and the value s may be 2. In this example, entry
M, €{1, . .., 2} contains an indication of whether user i
previously accepted an offer or promotion j. It should be
noted that additional information can be associated with the
matrix M and used by various estimators in the estimator
ensemble 202. In one or more implementations this addi-
tional information includes time information, such as the
time that a value was provided by a user, a timespan between
an item’s availability and a user providing a value for the
item, a timespan (e.g., a number of days or years) between
an item’s availability and a user providing a value for the
item, and so forth.

[0044] The matrix completion problem aims to recover the
matrix M from a subset 2=[m]x[n] of its entries. Given the

subset 2, P (M) denotes the projection of matrix M onto
the subset Q, which amounts to zeroing out unobserved
(empty) elements of the matrix M.

[0045] The ensemble deep learning model 124 receives
the enhancement request 208, which is a request for a
recommendation on how to enhance (e.g., improve) the
digital experience for a user. The enhancement request 208
includes an identification of a user’s past interactions with
digital experiences. These past user interactions can be past
user interactions with the digital experience generation
system 104, or alternatively past user interactions with other
systems or devices that the digital experience generation
system 104 has access to. The type of past user interactions
with digital experiences included in the enhancement
request 208 depends on the digital experience use scenario

Oct. 8, 2020

that the ensemble deep learning model 124 is trained for. The
past user interactions with digital experiences can be pro-
vided as, for example, the matrix M discussed above. The
enhancement request 208 also optionally includes an iden-
tifier of at least one item (e.g., movie, offer or promotion,
etc.) that the recommendation is to be provided for. The
ensemble deep learning model 124 generates the digital
experience enhancement recommendation 206 based on the
enhancement request 208. The value(s) output as the digital
experience enhancement recommendation 206 depends on
the digital experience use scenario that the ensemble deep
learning model 124 is trained for.

[0046] The ensemble deep learning model 124 can be used
for various different digital experience use scenarios. In one
or more embodiments, the digital experience enhancement
request 206 generated by the ensemble deep learning model
124 is one of multiple potential values that an item may
have. One example digital experience use scenario is movie
recommendations, where the ensemble deep learning model
124 is trained to generate movie recommendations. In this
example, the enhancement request 208 includes an identifier
of at least one movie that the digital experience generation
system 104 desires a prediction for, and includes as the past
user interactions ratings that the user gave movies in the
past. The digital experience enhancement recommendation
206 is a value (e.g., a numerical value from 1 to 5) that is a
prediction of what the user would rate a particular movie.

[0047] Another example use scenario is offer or promotion
selection, where the ensemble deep learning model 124 is
trained to generate predictions of whether a user will accept
aparticular offer or promotion. In this example, the enhance-
ment request 208 includes an identifier of at least one offer
or promotion that the digital experience generation system
104 desires a prediction for, and includes as the past user
interactions identifiers of offers or promotions that were
previously presented to the user and an indication of whether
those offers or promotions were accepted by the user. The
digital experience enhancement recommendation 206 is a
value that is a prediction of whether the user would accept
the offer or promotion. Such a value could be a Boolean
value (e.g., indicating either Yes or No), a value between 0
and 1 indicating the probability that the user would accept
the offer or promotion, and so forth.

[0048] Another example use scenario is offer (or adver-
tisement) presentation determination, where the ensemble
deep learning model 124 is trained to generate predictions of
whether it is better to present an offer (or advertisement) to
the user during the digital experience, or better to not present
an offer (or advertisement) to the user during the digital
experience. In this example, the enhancement request 208
includes as the past user interactions indications of whether
the user accepted any offer (or advertisement) during par-
ticular types of digital experiences. The digital experience
enhancement recommendation 206 is a value that is a
prediction of whether it is better to present or not present an
offer (or advertisement) to the user during a particular digital
experience. Such a value could be a Boolean value (e.g.,
indicating either Yes or No), a value between 0 and 1
indicating the probability that it would be better to present
the offer (or advertisement) to the user during the particular
digital experience.

[0049] Another example use scenario is web design selec-
tion, where the ensemble deep learning model 124 is trained
to generate predictions of how to display a web site (e.g., the

US 2020/0320382 Al

colors used, the fonts used). In this example, the enhance-
ment request 208 includes as the past user interactions
identifiers of settings made or preferences of the user (e.g.,
color settings, font settings). The digital experience
enhancement recommendation 206 is a value that is a
prediction of what display settings to use for the web site,
such as probability values of each of multiple different
colors and/or fonts being preferred by the user.

[0050] Another example use scenario is link or venue
selection, where the ensemble deep learning model 124 is
trained to generate predictions of what link or venue to
display a user should be directed to after an initial view or
web page is displayed. In this example, the enhancement
request 208 includes as the past user interactions identifiers
of links or venues that the user selected or viewed. The
digital experience enhancement recommendation 206 is a
value that is a prediction of what link or venue should be
displayed or what additional web page should be displayed
after an initial view or web page is displayed, such as
probability values of each of multiple different links or
venues the user should be directed to.

[0051] Another example use scenario is product packag-
ing, where the ensemble deep learning model 124 is trained
to generate predictions of how to package a product (e.g.,
how to display or promote a product as part of the digital
experience). In this example, the enhancement request 208
includes identifiers of different product packaging options,
and includes as the past user interactions identifiers of
product packaging options that were purchased or selected
by the user. The digital experience enhancement recommen-
dation 206 is a value that is a prediction of what product
packaging option to use for the user, such as probability
values of each of multiple different product packaging
options being the product packaging option to user for the
user.

[0052] Another example use scenario is digital experience
re-design timing, where the ensemble deep learning model
124 is trained to generate predictions of what time(s) is best
to re-design the digital experience (e.g., change a web page
design, change links, change offers, etc.). In this example,
the enhancement request 208 includes identifiers of different
times (e.g., hours of the day and/or days of the week), and
includes as the past user interactions indications of, for
example, complaints received when digital experiences have
been re-designed, how many times users attempted to access
the digital experience but were unable to due to a re-design,
and so forth. The digital experience enhancement recom-
mendation 206 is a value that is a prediction of what time to
re-design the digital experience, such as probability values
of each of multiple different times being the best time to
re-design the digital experience.

[0053] Another example use scenario is determining
whether to change the digital experience design based on
time or the location of a user, where the ensemble deep
learning model 124 is trained to generate predictions of
whether to change the digital experience design based on
time or the location of a user. In this example, the enhance-
ment request 208 as the past user interactions indications of,
for example, complaints received when digital experiences
have been changed, how many times users attempted to
access the digital experience but were unable to due to a
digital experience change, and so forth. The digital experi-
ence enhancement recommendation 206 is a value that is a
prediction of whether to change the digital experience

Oct. 8, 2020

design based on time or the location of a user. Such a value
could be a Boolean value (e.g., indicating either Yes or No),
a value between 0 and 1 indicating the probability that it
would be better to change the digital experience based on
time rather than location of the user, and so forth.

[0054] It should be noted that although various examples
of digital experience use scenarios that the ensemble deep
learning model 124 can be used with are discussed herein,
these are merely examples. The ensemble deep learning
model 124 can be used with any of numerous different
digital experience use scenarios.

[0055] The digital experience generation system 104 can
use this enhancement recommendation 206 to create and
display an enhanced digital experience for the user. In one
or more implementations, the enhancement recommenda-
tion 206 is a single value (e.g., a movie rating between 1 and
5, a Boolean value (e.g., indicating either Yes or No), a time
to perform an action). If the single value satisfies one or
more rules or criteria (e.g., is greater than a threshold value,
such as 4, or is a Boolean value indicating Yes), then the
digital experience generation system 104 generates an
enhanced digital experience using the particular content
(e.g., displays a movie recommendation, displays an offer or
promotion, uses a particular font or color). However, if the
single value does not satisfy the one or more rules or criteria
(e.g., is not greater than a threshold value, such as 4, or is a
Boolean value indicating No), then the digital experience
generation system 104 does not use that particular content to
generate an enhanced digital experience (e.g., does not
display a recommendation for a particular movie, does not
display a particular offer or promotion, does not use a
particular font or color).

[0056] Additionally or alternatively, the enhancement rec-
ommendation 206 is a probability distribution on a range of
potential values, {1, . . ., s}. For example, the enhancement
request 206 can indicate the probability that the user would
rate a particular movie 1, the probability that the user would
rate a particular movie 2, the probability that the user would
rate a particular movie 3, the probability that the user would
rate a particular movie 4, and the probability that the user
would rate a particular movie 5. The digital experience
generation system 104 can use his probability distribution in
various manners, such as recommending the particular
movie only if there is at least a threshold probability (e.g.,
80%) that the user would rate the particular movie a 4 or 5.

[0057] By way of another example, the enhancement
request 206 can indicate the probability that an offer or
promotion should be provided to the user and a probability
that an offer or promotion should not be provided to the user.
The digital experience generation system 104 can use his
probability distribution in various manners, such as provid-
ing the offer or promotion only if there is at least a threshold
probability (e.g., 80%) that the offer or promotion should be
provided to the user.

[0058] By way of another example, the enhancement
request 206 can indicate, for each hour in the day, a
probability that a re-design of the digital experience should
occur during that hour. The digital experience generation
system 104 can use his probability distribution in various
manners, such as re-designing the digital experience during
aparticular hour of the day only if there is at least a threshold
probability (e.g., 75%) that the digital experience should be
re-designed during that particular hour of the day.

US 2020/0320382 Al

[0059] FIG. 3 illustrates an example 300 of training the
ensemble deep learning model. As discussed above, the
ensemble deep learning model 124 is trained in a two-stage
process. Generally, in a first stage 302, the estimators in the
estimator ensemble 202 are trained using a first training data
set 304. In a second stage 306, a second training data set 308
is provided to the estimators in the estimator ensemble 202.
In the second stage the estimators in the estimator ensemble
202 generate estimator output values 310 that are used to
train the neural network 204. The first training data set 304
and the second training data set 308 can be different training
data sets, or alternatively can at least partially overlap (e.g.,
contain some of the same samples).

[0060] The first training data set 304 and the second
training data set 308 include training data specific to the
digital experience use scenario that the ensemble deep
learning model 124 is being trained for. For example, if the
ensemble deep learning model 124 is being trained to
generate movie recommendations, then each sample of
training data in the training data set includes data for
multiple users and, for each of the multiple users, ratings that
the user gave movies in the past. Each sample of training
data in the training data set also includes known ratings (the
ground truths) for multiple movies that the ensemble deep
learning model 124 is generating a prediction for. The
example 300 is discussed with reference to ensemble deep
learning model 124 being trained to generate movie recom-
mendations, however it should be noted that the ensemble
deep learning model 124 can be trained for various other
digital experience use scenarios as discussed above.

[0061] In the first stage 302, the machine learning systems
in the estimator ensemble 202 are trained using the first
training data set 304. In one or more implementations, the
machine learning systems in the estimator ensemble 202 are
trained individually. Additionally or alternatively, multiple
machine learning systems in the estimator ensemble 202 can
be trained concurrently. Each machine learning system in the
estimator ensemble 202 generates an estimator output value
210 for each sample of training data. In the first stage 302,
for each estimators in the estimator ensemble 202, the
estimator output value 210 from the machine learning sys-
tem for a sample of training data is compared to the ground
truth for the sample of training data. Each estimator includes
various filters or nodes with weights that are tuned (e.g.,
trained) to minimize the loss between the ground truth for
the sample of training data and the estimator output value
210 for the sample of training data.

[0062] After the first stage 302 is completed, the second
stage 306 is performed. In the second stage 306, the neural
network 204 is trained using the second training data set
308. The second training data set 308 is input to the
estimators in the estimator ensemble 202, each of which
generates an estimator output value 210 for each sample of
training data. However, rather than using those estimator
output values 210 to train the estimators in the estimator
ensemble 202, in the second stage 306 the estimator output
values 210 are input to the neural network 204. For each
sample of training data in the second training data set 308,
the neural network 204 generates a digital experience
enhancement recommendation 206 based on the estimator
output values 210 generated by the estimators in the esti-
mator ensemble 202 from the second training data set 308.
The neural network 204 includes various filters or nodes
with weights that are tuned (e.g., trained) to minimize the

Oct. 8, 2020

loss between the ground truth for the sample of training data
and the digital experience enhancement recommendation
206 for the sample of training data.

[0063] The first stage 302 and the second stage 306 can be
fed with samples from the first training data set 304 and the
second training data set 308 in various batch sizes (e.g., 512
or 4096 samples). In situations where there are numerous
samples of training data (e.g., millions of samples of training
data), the samples from the first training data set 304 and the
second training data set 308 can be fed with samples in a
single epoch. Additionally or alternatively, multiple epochs
can be used.

[0064] Returning to FIG. 2, the estimator ensemble 202
includes estimators of different classes or types. These
classes of estimators are illustrated as singular value decom-
position (SVD) estimators 212, neighborhood and clustering
estimators 214, factorization estimators 216, gradient boost-
ing estimators 218, time-aware estimators 220, and varia-
tional autoencoder (VAE) estimators 222. Each of these
machine learning system or estimators (which may also be
referred to as models) output an estimate of the digital
experience enhancement recommendation as an estimator
output value 210. Various different estimators are discussed
herein. In one or more implementations, the estimator
ensemble 202 includes all of the estimators discussed herein.
Additionally or alternatively, additional estimators may be
added to the estimator ensemble 202, or in some situations
one or more estimators discussed herein is not included in
the estimator ensemble 202.

[0065] SVD estimators 212 refer to estimators that replace
missing entries from a matrix (e.g., the matrix M discussed
above) using singular value decomposition. These estima-
tors can operate on the matrix M itself, or alternatively on a
matrix of residuals obtained by subtracting the average of
the row and column mean from each entry in the matrix M.
[0066] The SVD of the matrix M is M=UZVZ, where r is
the rank of the matrix M, U is an mxr matrix with ortho-
normal columns, Z is an rxr diagonal matrix of positive
entries, and V is an rxn matrix with orthonormal columns.

[0067] The nuclear norm of the matrix M is given as
IM|l.=Z,_,"0,(M), where o, (M) denotes the kth singular
value of M. A soft-thresholded SVD algorithm generates the
SVD by minimizing:

12 P o0 +MM -

where M denotes the estimate for M, |||, denotes the
Frobenius matrix norm that takes the square root of the sum
of squares of the matrix entries. Additional information
regarding the soft-thresholded SVD algorithm can be found
in “Spectral regularization algorithms for learning large
incomplete matrices,” by R. Mazumder, T. Hastie, and R.
Tibshirani, Journal of Machine Learning Research, vol. 11,
pp. 2287-2322, 2010, which is hereby incorporated by
reference herein in its entirety.

[0068] In one or more implementations, the SVD estima-
tors 212 include multiple estimators using the IRLB algo-
rithm and the augmented implicitly restarted Lanczos bidi-
agonalization algorithm. These multiple estimators include
one estimator using the IRLB algorithm and the augmented
implicitly restarted Lanczos bidiagonalization algorithm
having a matrix rank of 5, another estimator using the IRLB
algorithm and the augmented implicitly restarted Lanczos
bidiagonalization algorithm having a matrix rank of 7, and
another estimator using the IRLB algorithm and the aug-

US 2020/0320382 Al

mented implicitly restarted Lanczos bidiagonalization algo-
rithm having a matrix rank of 13. Additional information
regarding the IRLB algorithm and the augmented implicitly
restarted Lanczos bidiagonalization algorithm can be found
in “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators,” by C.
Lanczos, Journal of Research of the National Bureau of
Standards, vol. 45, no. 4, pp. 255-282, 1950, and “Aug-
mented implicitly restarted Lanczos bidiagonalization meth-
ods,” by J. Baglama and L. Reichel, SIAM Journal of
Scientific Computing, vol. 27, no. 1, pp. 19-42, 2005, both
of' which are hereby incorporated by reference herein in their
entirety.

[0069] In one or more implementations, the SVD estima-
tors 212 include multiple estimators using the Soft-Impute
(also referred to as softimpute) algorithm. These multiple
estimators include one estimator using the Soft-Impute
algorithm having a matrix rank of 5, another estimator using
the Soft-Impute algorithm having a matrix rank of 7, another
estimator using the Soft-Impute algorithm having a matrix
rank of 13, and another estimator using the Soft-Impute
algorithm having a matrix rank of 100. Additional informa-
tion regarding the Soft-Impute algorithm can be found in
“Spectral regularization algorithms for learning large incom-
plete matrices,” by R. Mazumder, T. Hastie, and R. Tibshi-
rani, Journal of Machine Learning Research, vol. 11, pp.
2287-2322, 2010.

[0070] In one or more implementations, the SVD estima-
tors 212 include an estimator using a baseline algorithm. The
baseline algorithm fills in each empty entry in the matrix M
with a value that is the average of the row average for that
entry and the column average for that entry. For example, for
an empty entry M, ;, the average of entries in the row M, is
calculated and the average of entries in the column M, is
calculated. The value of the empty entry M, is then the
average of the average of entries in the row M, and the
average of entries in the column M,.

[0071] Neighborhood and clustering estimators 214 refer
to estimators that replace a missing entry from a matrix (e.g.,
the matrix M discussed above) based on the k nearest entry
values to the missing entry or on entry values in a same
cluster as the missing entry. The calculated values can be, for
example, an average of the k nearest entry values or an
average of the entry values in the cluster. These estimators
can operate on the matrix M itself, or alternatively on a
matrix of residuals obtained by subtracting the average of
the row and column mean from each entry in the matrix M.
[0072] In one or more implementations, the neighborhood
and clustering estimators 214 include an item k-nearest
neighbors (k-NN) estimator. The item k-NN estimator con-
siders the r-dimensional rows of V from the soft-thresholded

SVD decomposition of the projection P 5(M). These vec-
tors give a dense, low-dimensional (e.g., r=5) representation
for each item. A k-d tree is used to find the k=10 (or
alternatively k=1000) nearest neighbors for each item
according to the Euclidean metric. The Euclidean metric
measures the distance between two items as the distance
between the corresponding sparse column vectors in the
projection P o(M). For a given (user, item)-pair, a determi-
nation is made whether any of the item’s neighbors have a
non-zero value (e.g., are not empty), and if so a weighted
average is calculated over the values of the item’s neighbors.
The weights are proportional to the exponentiated negative
distance between the item and its neighbors. Additional

Oct. 8, 2020

information regarding k-d trees can be found in “Multidi-
mensional binary search trees used for associative search-
ing,” by J. L. Bentley, Communications of the ACM, vol. 18,
no. 9, pp. 509-517, 1975, which is hereby incorporated by
reference herein in its entirety.

[0073] It should be noted that a smaller value for k restricts
to only the most similar neighbors, and so decreases the bias
of this estimate. However, it also increases the chance that
very few (or none) of the neighbors will have a non-zero
value. In the case that too few nearest neighbors to an item
have a non-zero value (e.g., fewer than two of the k=10
nearest neighbors to a movie has a rating), then this esti-
mator does not return a value. In such situations, the neural
network 204 generates the digital experience enhancement
recommendation 206 based on the estimator output values
210 from the other estimators in the estimator ensemble 202.
This allows the item k-NN estimator to abstain from gen-
erating an estimator output value 210 when it is not suffi-
ciently confident, and falls back to estimators that will be
more reliable for a given (user, item)-pair.

[0074] In one or more implementations, the neighborhood
and clustering estimators 214 includes a user k-means
estimator. The user k-NN estimator considers the r-dimen-
sional rows of U from the soft-thresholded SVD decompo-

sition of the projection P ,(M). These vectors give a dense,
low-dimensional (e.g., r=5) representation for each user.
K-means clustering is used to partition the users into k
clusters (e.g., k=480), e.g., where each user belongs to the
cluster with the nearest mean. For k-means clustering, each
user is represented as a multi-dimensional vector (e.g., a
5-dimensional vector) and k-means clustering is applied to
these vectors. These vectors are the left singular vectors
from the singular value decomposition of the training data,
which capture information about a user’s previously
expressed preferences from the training data. This process
assigns each vector to one of k clusters in a way that attempts
to minimize the average intra-cluster variance (the average
over clusters of the average distance from each vector in a
cluster to the centroid of that cluster). In one or more
implementations, this assignment is made using Lloyd’s
algorithm, which alternates between assigning each vector
to the cluster having the nearest centroid and recalculating
the centroids based on the new assignments. For a given
(user, item)-pair, a determination is made whether any other
users in the user’s cluster have provided a value for the item,
and if so an average is calculated over the values provided
by the other users in the cluster. The user k-NN estimator
assumes that users in the same cluster have similar tastes, so
to predict a user’s value for a given item, the user k-NN
estimator examines the values users in the same cluster
provided for that item.

[0075] It should be noted that in the case that too few other
users in the cluster have provided a value for an item (e.g.,
fewer than 20% of the other users in the cluster have
provided a value for the item), then this estimator does not
return a value. In such situations, the neural network 204
generates the digital experience enhancement recommenda-
tion 206 based on the estimator output values 210 from the
other estimators in the estimator ensemble 202. This allows
the user k-means estimator to abstain from providing an
estimator output value 210 when it is not sufficiently con-
fident, and elegantly falls back to estimators that will be
more reliable for a given (user, item)-pair.

US 2020/0320382 Al

[0076] In one or more implementations, the neighborhood
and clustering estimators 214 includes a neighboring aver-
age estimator, which averages the values generated by the
item k-NN estimator and the user k-means estimator. For a
given (user, item)-pair, the neighboring average estimator
averages the values generated by the item k-NN estimator
and the user k-means estimator for that (user, item)-pair. If
one of the item k-NN estimator and the user k-means
estimator does not return a value, the neighboring average
estimator uses the value by the one of the item k-NN
estimator and the user k-means estimator that did return a
value. If neither the movie k-NN estimator nor the user
k-means estimator returns a value, then the neighboring
average estimator does not return a value. In such situations,
the neural network 204 generates the digital experience
enhancement recommendation 206 based on the estimator
output values 210 from the other estimators in the estimator
ensemble 202.

[0077] In one or more implementations, the neighborhood
and clustering estimators 214 includes a cross k-NN of users
and items estimator. The cross k-NN estimator considers the
r-dimensional rows of V from the soft-thresholded SVD

decomposition of the projection P o(M). These vectors give
a dense, low-dimensional (e.g., r=5) representation for each
item. A k-d tree is used to find the k=100 nearest neighbors
for each item according to the Euclidean metric. The cross
k-NN estimator also considers the r-dimensional rows of U
from the soft-thresholded SVD decomposition of the pro-

jection P o(M). These vectors give a dense, low-dimen-
sional (e.g., r=5) representation for each user. A k-d tree is
used to find the k=100 nearest neighbors for each item
according to the Fuclidean metric.

[0078] The cross k-NN estimator finds neighbors for both

rows and columns of the projection P,(M), and then
aggregates values along the sub-matrix consisting of the
cross product between neighboring users and neighboring
items. In other words, to generate a value for user i on item

j, the cross k-NN estimator finds indices Nui < [m] corre-

sponding to the neighbors of user i, and indices N, vj c[n]
corresponding to the neighbors of item j, and computes a

weighted average over the available values in N, x N, vj.
The weights are calculated using a normalized kernel func-
tion that is proportional to

(distance in user space)’—(distance in item space):

The weights account for distances in user-space and item-
space. In this manner, the k-NN estimator leverages values
for similar items provided by similar users.

[0079] It should be noted that in the case that too few
neighboring users have provided values for too few neigh-
boring items (e.g., fewer than 20% of the neighboring items
have non-zero value), then this estimator does not return a
value. In such situations, the neural network 204 generates
the digital experience enhancement recommendation 206
based on the estimator output values 210 from the other
estimators in the estimator ensemble 202. This allows the
cross k-NN estimator to abstain from providing an estimator
output value 210 when it is not sufficiently confident, and
elegantly falls back to estimators that will be more reliable
for a given (user, item)-pair.

[0080] In one or more implementations, the neighborhood
and clustering estimators 214 includes a time-aware cross

Oct. 8, 2020

k-NN estimator. The time-aware cross k-NN estimator is
analogous to the cross k-NN estimator, except that the
weighted average computed over the available values in

Nuixij account for distances in user-space and item-
space, as well as the difference in time between values. The
weights are calculated using a normalized kernel function
that is proportional to

e—(distance in user space)—(distance in item space)—(distance in

time).

[0081] Factorization estimators 216 refer to estimators
that decompose the matrix M into the product of two
matrices of lower dimensionality. More specifically,
M=UV7 is estimated where U is an nxk matrix of user
factors and V is an mxk matrix of item factors.

[0082] In one or more implementations, the factorization
estimators 216 include a weighted alternating least squares
estimator. The weighted alternating least squares estimator
is a weighted matrix factorization estimator that accounts for
the implicit preference a user gives to an item through the act
of using the item (e.g., if the item is a movie, then watching
and rating the movie). The weighted alternating least squares
estimator is initialized from the SVD decomposition by
taking, for example, UVZ, £V from one of the SVD esti-
mators 212 rather than random values. The weighted alter-
nating least squares estimator seeks:

argmin
u,v

0,7 = P (VW o@vT)| + 2R +1IvIF)

where W denotes the number of items a user has provided
values for and | denotes element-wise multiplication. Addi-
tional information regarding the weighted alternating least
squares estimator can be found in “Collaborative filtering for
implicit feedback datasets,” by Y. Hu, Y. Koren, and C.
Volinsky, in IEEE International Conference on Data Min-
ing, 2008, pp. 263-272, which is hereby incorporated by
reference herein in its entirety.

[0083] In one or more implementations, the factorization
estimators 216 include a neural network matrix factorization
estimator. The neural network matrix factorization estimator
is a feedforward fully-connected neural network mapping
with learned representation vectors for users and items
through the network to predict the corresponding value for
an item. Learned estimator parameters for the neural net-
work matrix factorization estimator include m user vectors
in R/, n item vectors in R”, and all parameters for the neural
network. User vectors are initialized with the U matrix and
the item vectors are initialized with the V matrix from the
soft-thresholded SVD estimator. The neural network param-
eters optionally receive Glorot uniform initialization.

[0084] During training of the neural network matrix fac-
torization estimator, for each batch three training steps are
performed: neural network parameters are updated, user
representations are updated, and item representations are
updated. Tikhonov [.2-regularization is applied to U and V.
For all parameter updates, the Adam optimizer is used. The
mean squared error (MSE) is used as the objective function
to minimize during training. The neural network uses leaky
rectified linear unit activation, and applies dropout after the
first hidden layer to prevent overfitting.

US 2020/0320382 Al

[0085] There separate optimizations are performed for
training the neural network matrix factorization estimator.
The neural network matrix factorization estimator uses a
model:

value(user;, item;) = neural network (neural network parameters,

user representation [/, :], item representation [, :])

[0086] where neural network parameters, user representa-
tion, and item representation are all parameters that the
neural network matrix factorization estimator learns. This
model is over-specified, meaning that the complete set of
parameters is higher-dimensional than it strictly needs to be,
so we use regularization. The training for neural network
parameters minimizes MSE on the training batch for its loss.
The training for user representation and item representation
both minimize MSE plus 0.1 times the .2 norm of the
parameters themselves as a form of regularization. The
neural network matrix factorization estimator fuses the
training of these three parameters: it calculates and collects
all the derivatives it will need from a given training batch
during a single evaluation and performs all training updates
concurrently.

[0087] Different neural network matrix factorization esti-
mators can be initialized in different manners. For example,
one neural network matrix factorization estimator is initial-
ized with the U matrix and the V matrix from an SVD
estimator 212 using the Soft-Impute algorithm having a
matrix rank of 13, and is trained with a single epoch (each
training data point is presented to the network once).
Another neural network matrix factorization estimator is
initialized with the U matrix and the V matrix from an SVD
estimator 212 using the Soft-Impute algorithm having a
matrix rank of 13, and is trained with 10 training epochs
(each training data point is presented to the network 10
separate times). Another neural network matrix factorization
estimator is initialized with the U matrix and the V matrix
from an SVD estimator 212 using the IRLB algorithm and
the augmented implicitly restarted Lanczos bidiagonaliza-
tion algorithm having a matrix rank of 13.

[0088] Additional information regarding neural network
matrix factorization can be found in “Neural network matrix
factorization”, by G. K. Dziugaite and D. M. Roy, 2015.
eprint: arXiv:1511.06443, and “Neural collaborative filter-
ing,” by X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S.
Chua, in International World Wide Web Conference, 2017,
pp. 173-182, both of which are hereby incorporated by
reference in their entirety.

[0089] In one or more implementations, the factorization
estimators 216 include a Gaussian matrix factorization esti-
mator. The Gaussian matrix factorization estimator is a
probabilistic matrix factorization estimator where a genera-
tive graphical estimator is specified and the maximum a
posteriori parameters are found or Gibbs sampling in a
Bayesian setting is performed. The Gaussian matrix factor-
ization models

Ml_jNi.i.d]\/‘(l/iI,iT+b_) 02)

i

where (similar to the discussions above) U is an nxk matrix
of user factors and V is an mxk matrix of item factors, b,
denotes the average of the mean rating from user i and the
mean value of item j, and account for user- and item-effects,

Oct. 8, 2020

and 0°=1. In the Gaussian matrix factorization estimator, U
and V are learned to maximize the log likelihood of the
observed data.

[0090] Additional information regarding the Gaussian
matrix factorization estimator can be found in “Probabilistic
matrix factorization,” by R. R. Salakhutdinov and A. Mnih,
in Advances in Neural Information Processing Systems,
2008, pp. 1257-1264, and “Bayesian probabilistic matrix
factorization using markov chain monte carlo,” by R.
Salakhutdinov and A. Mnih, in International Conference on
Machine Learning, 2008, pp. 880-887, both of which are
hereby incorporated by reference herein in their entirety.

[0091] In one or more implementations, the factorization
estimators 216 include a Poisson matrix factorization esti-
mator. The Poisson matrix factorization estimator is a proba-
bilistic matrix factorization estimator that assumes each
entry in the matrix M is drawn from a Poisson distribution—
an exponential family distribution over non-negative inte-
gers—whose parameter is a linear combination of the cor-
responding user preferences and item attributes.

[0092] In the Poisson matrix factorization estimator, the
following estimator is learned:

A/Iif"""dPoisson(UiViﬁbij)
where MiJ:[E [A)A(i.I)A(ijE{l, . .., s}] is predicted and
X,,~Poisson(U,V,“+b,) and U, V denote the learned estima-
tor parameters. The Poisson matrix factorization estimator is
trained to minimize the batch negative log likelihood of the
data under the probabilistic model. In this way, the Poisson
matrix factorization estimator seeks parameters that condi-
tionally make the observed data most likely. Additional
information regarding the Poisson factorization estimator
can be found in “Scalable recommendation with hierarchical
poisson factorization,” by P. Gopalan, J. M. Hofman, and D.
M. Blei, in Conference on Uncertainty in Artificial Intelli-
gence, 2015, pp. 326-335, which is hereby incorporated by
reference herein in its entirety.

[0093] In one or more implementations, the factorization
estimators 216 include a factorization machine estimator.
The factorization machine estimator estimates all nested
variable interactions (comparable to a polynomial kernel in
a Support Vector Machine (SVM)), but uses a factorized
parametrization instead of a dense parametrization like in
SVMs.

[0094] A factorization machine estimator of second degree
learns a regression estimator of:

PV I
PE)=wotZe Wixi+21sisjsl< vi;vj>'xi;-xj

for parameters w,€R, k=1, ..., and v,€R’ k=1, ..., 1.
Factorization machine estimators are designed for sparsity.
In a factorization machine estimator 216, xR "*” denotes
a one-hot vector representation for the user concatenated
with a one-hot vector representation for the item. The
factorization machine estimator is trained to minimize the
MSE loss with L2 regularization.

[0095] Additional information regarding the factorization
machine estimator can be found in “Factorization
machines,” by S. Rendle, in IEEE International Conference
on Data Mining, 2010, pp. 995-1000, and “Factorization
machines with libfim,” by S. Rendle, ACM Transactions on
Intelligent Systems and Technology, vol. 3, no. 3, 2012, both
of' which are hereby incorporated by reference herein in their
entirety.

US 2020/0320382 Al

[0096] Gradient boosting estimators 218 refer to estima-
tors that iteratively add weak learners to an ensemble of
machine learning systems. The gradient boosting estimator
is itself an ensemble of multiple machine learning systems
and weak learners (machine learning systems) are iteratively
added to improve the gradient boosting estimator.

[0097] In an example gradient boosting estimator, values
for a (user, item) pair as a function of their representations
in thresholded SVD feature space are learned. A loss func-
tion L(%*) and a training method, such as regression trees,
are used to train new weak learners h,. This loss function is
mean square error plus a regularization term to penalize the
model complexity. The ensemble is initialized at a constant
value a, minimizing loss on the training set {(x,,y,)},_,"

argmin «—,
D o)

Fo(x)=ao =

[0098] At step t=1 of the estimator, we take the current
ensemble,

Foa®=apZ T ahy),

a linear combination of weak learners, and compute the
pseudo-residuals

_ dL(yi, 5")
T =" 8y, [ifrie
i

[0099] A new weak learner h, is trained on the set of
pseudo-residuals {(x,.r,,)},—,” and the multiplier

a= Y Ll Freala) + aly)

is found. The new ensemble is then
Fx)=F . (x)+ahx).

[0100] Additional information regarding gradient boost-
ing can be found in “Xgboost: A scalable tree boosting
system,” by T. Chen and C. Guestrin, in International
Conference on Knowledge Discovery and Data Mining,
2016, pp. 785-794, which is hereby incorporated by refer-
ence herein in its entirety.

[0101] Time-aware estimators 220 refer to estimators that
leverage time when generating estimator output values.
Various times can be leveraged, such as the time that a value
was provided by a user, a timespan between an item’s
availability (e.g., a movie’s release) and a user providing a
value for the item, and so forth.

[0102] In one or more implementations, the time-aware
estimators 220 include a time-aware neural factorization
estimator. The time-aware neural factorization estimator is a
version of the neural network matrix factorization estimator
discussed above that includes time components as inputs to
the neural network. In one or more implementations these
time components include a time (e.g., time of day and/or
date) that a value was provided by a user (e.g., a time the
user provided a movie rating), optionally normalized to lie
in [0,1]. Additionally or alternatively, these time compo-

Oct. 8, 2020

nents include an indication of a timespan (e.g., a number of
days or years) between an item’s availability and a user
providing a value for the item (e.g., a timespan between a
movie’s release and the user providing a rating for the
movie). The time components are provided as an additional
input to the network. However, as opposed to the item vector
(that is treated as a parameter and optimized), time is treated
as known and exogenous.

[0103] Updates to the U matrix and the V matrix can be
sparse (e.g., any given row only updates a handful of times
for each run through the data set). Accordingly, a Nesterov
Momentum optimizer is used to train the U matrix and the
V matrix, while continuing to apply the Adam optimizer for
updating the neural network parameters (all of which are
updated at each training step). The Adam optimizer tweaks
the learning rate for each parameter depending on a window
of previous gradients for each parameter. This approach may
not be best when updates to a given parameter occur only
sporadically, so the Nesterov Momentum optimizer is used
to train the U matrix and the V matrix. The objective
function remains MSE to minimize during training.

[0104] In one or more implementations, the time-aware
estimators 220 include a neural one-hot factorization with
time component estimator.

[0105] In the neural one-hot factorization with time com-
ponent estimator, a neural network receives as inputs takes
user- and item representations, as well as one or more time
features. In one or more implementations these time features
include year that the item was first available (e.g., release
year for a movie). Additionally or alternatively, these time
features include a time (e.g., time of day and/or date) that a
value was provided by a user (e.g., a time the user provided
a movie rating). Additionally or alternatively, these time
features include a time (e.g., time of day and/or date) that the
user provided his or her first value (e.g., a time the user
provided his or her first movie rating). The neural network
outputs a probability distribution on the range of possible
item values, {1, ..., s}.

[0106] Training of the neural one-hot factorization with
time component estimator minimizes the cross-entropy loss
between a one-hot vector representing the ground truth and
the estimator’s predicted distribution. In addition to provid-
ing estimates for (user, movie, time)-values, the neural
one-hot factorization with time component estimator allows
prediction of the variance or uncertainty of the generated
estimate. Using a probability distribution provides more
information about the uncertainty of an estimate than a point
estimate provides. For example, the variance of the estimate
can be determined, a chance that a user would provide one
of two different values (e.g., a movie rating of 4 or 5), and
so forth. Thresholding is then optionally used to exclude
highly uncertain estimates (e.g., estimates with an uncer-
tainty greater than a threshold amount, such as 70%) from
the estimator output values 210.

[0107] A probability distribution can be used by the digital
experience generation system 104 in various manners, such
as to safeguard against “risky” behavior. For example,
consider movie A that the probability distribution indicates
has a 0.5 chance of being rated 1 and a 0.5 chance of being
rated 5, and movie B that the probability distribution indi-
cates will almost certainly be rated 3. A point estimate for the
mean of the distribution would see no difference between

US 2020/0320382 Al

movies A and B, but a distributional estimate would include
information that there’s a 50% chance the user will greatly
dislike movie A.

[0108] In one or more implementations, the time-aware
estimators 220 include a time-binned SVD estimator. The
time-binned SVD estimator partitions the training data into
approximately equally sized bins or groups based on the
time stamps associated with them, so values provided at
around the same time will be placed in the same or a
neighboring bin. A separate SVD estimator is trained for
each bin. Any of a variety of different SVD estimators can
be used with the time-binned SVD estimator, such as any of
the SVD estimators 212 discussed above.

[0109] Each of these trained SVD estimators can then be
used to predict a value for a given (user, movie, time) tuple,
and a weighted average formed over all such predicted
values. The given (user, movie, time) tuple is placed into one
of the bins, and a higher weight is given to the predicted
value from the SVD trained for the bin into which the tuple
was placed. Predicted values from all other bins can be given
the same lower weight. Additionally or alternatively, the
weight given to a predicted value from a particular bin can
be based on how close a time associated with the particular
bin (e.g., an average or mean time for data in the particular
bin) is to a time associated with the bin into which the tuple
was placed (e.g., an average or mean time for data in the bin)
or the time in the tuple. For example, lower weights can be
given to bins having an associated time that is further from
the time associated with the bin into which the tuple was
placed (or the time in the tuple).

[0110] In one or more implementations, the time-aware
estimators 220 include a tensor factorization estimator. In
the tensor factorization estimator, data is partitioned into
bins analogous to the time-binned SVD estimator. After
partitioning the data into time bins, the tensor factorization
estimator views the data as a value tensor, where the users
by items matrix now extends along a third, temporal dimen-
sion. This allows the tensor factorization estimator to per-
form time-aware factorization into three tensors, one for
each dimension.

[0111] A generalization of SVD to tensors, known as the
minimal canonical polyadic (CP) decomposition, yields the
estimator:

,
M=) \al @adl @al
i=1

The tensor factorization estimator is initialized with higher-
order SVD and trained using alternating least squares to
minimize the mean square error of the decomposition, using
a matrix rank of 4.

[0112] VAE estimators 222 refer to estimators that learn
parameters for an autoencoder using variational inference.
In one or more implementations, the VAE estimators 222
include a VAE estimator. An autoencoder estimators the
identity function with a neural network. The architecture of
an autoencoder includes a hidden layer of relatively small
dimensionality that serves as an information bottleneck.
Upon training, the output from this layer yields a lower-
dimensional representation of the original data. For
example:

Oct. 8, 2020

xLz52%

where X, X €R and ZER™ for m«d. The neural networks
f R“>R™ and g: R"—>R are trained so that gof approxi-
mates the identity on n-dimensional data. An objective
function minimizes the loss between X and X. This implies
that f(x)€R™ contains the most relevant information
required to reconstruct X.

[0113] Iff] gare linear maps and the L, loss is imposed on
the reconstruction, autoencoding solves for the principal
components from PCA. In this way, autoencoding can be
considered as a nonlinear extension of PCA.

[0114] In Bayesian statistics, variational inference
approximates intractable integrals (expectations) with opti-
mization, by substituting the integrand (probability distri-
bution) for the closest member of a parametrized family of
distributions. Given a conditional distribution p(zlx), the
following can be calculated:

E i) Ix1={fz)p(zIx)dx

where the integral on the right hand side cannot be solved
analytically. A variational distribution q, (zIx) is introduced
to approximate p(zlx), for which

g4z kx)dx

becomes a tractable approximation to the integral of interest.
Parameters 0 are found to minimize

Dy (qo(z9)[p(z1%))

where Dg,(¢|*) denotes the Kullback-Leibler divergence,
with the aim to make q, as close to p as possible. This
corresponds to maximizing the Evidence Lower Bound (also
referred to as ELBO),

L©-E 4. log pex)-log g6E0].

[0115] Approximating the gradients for optimization from
batches of samples, allowing online parameter updates to be
made while holding only a fraction of data in memory, this
process is referred to as stochastic variational inference.
[0116] A variational autoencoder learns a probabilistic
autoencoding estimator as two conditional distributions
described by neural networks. The encoding distribution
qe(zlx) describes how to sample the latent low-dimensional
representation from an observation x and the decoding
distribution pg, (xIz) describes how to sample a recon-
structed x from the latent representation. Optimization aims
to maximize:

L8, ¢) = Eggn[logpy(x, 2)] = Egpn [loggs(z | x)]
= Egocaologpy(x, 2)] — Egaam[logge(z | x)] +
Egs([logp(2)]

= Eggn[logpy(x, 2)] = Dirlgs(z| 0l p(2)

[0117] For computational expediency, the expectations
above can be approximated via single-sample Monte Carlo
integration. In particular, for the ith X,,

Z~qo(1X=x,)

is sampled and the following unbiased approximations are
formed:

E ciollog pox.o)l=log po(X,Z)

E ciollog gaziv)llog ge(Z:X:)

US 2020/0320382 Al

[0118] The VAE estimator takes X,ER” to be user i’s
ratings for each item (or the residual ratings after subtracting
off half of user i’s and item j’s mean values), where b refers
to the number of items included in the matrix M. The VAE
estimator estimates:

9o(z1x)=N10(2:/1 (%),exp(2(¥)]10))

where 1, denotes a 10-dimensional Normal distribution, I,
is the 10x10 identity matrix, and f}, f, are leaky rectified
linear unit activated neural networks with a single hidden
layer. Here, 6 corresponds to the parameters for the neural
networks fi, f,.

[0119]

Po(Zidx)=n,,(2:8(). 1)

The VAE estimator estimates:

where m, denotes the number of items user i rated, g is a
leaky rectified linear unit activated neural network with a
single hidden layer, and ¢ denotes the parameters for g. The
VAE estimator is trained to maximize the Evidence Lower
Bound (ELBO) discussed above, which provides a tractable
lower bound to the log likelihood. To maximize the log
likelihood the VAE estimator minimizes the negative evi-
dence lower bound as a loss function.

[0120] Additional information regarding variational auto-
encoders can be found in “Variational autoencoders for
collaborative filtering,” by D. Liang, R. G. Krishnan, M. D.
Hoffman, and T. Jebara, in International World Wide Web
Conference, 2018, pp. 689-698, and “Item recommendation
with variational autoencoders and heterogeneous priors,” by
G. Karamanolakis, K. R. Cherian, A. R. Narayan, J. Yuan, D.
Tang, and T. Jebara, in Workshop on Deep Learning for
Recommender Systems, 2018, both of which are hereby
incorporated by reference herein in their entirety.

[0121] In one or more implementations, the neural net-
work 204 is implemented as a 3-layer neural network. FIG.
4 illustrates an example 400 of a neural network 402. The
neural network 402 can be, for example, the neural network
204 of FIG. 2 or FIG. 3. The neural network 402 includes an
input layer 404, a hidden layer 406, and an output layer 408.
The estimator output values 210 are fed into the input layer
404, the hidden layer 406 implements leaky rectified linear
activation, and the output layer 408 outputs vectors of
predicted logits L. The example 400 further includes a
mapping and normalization layer 410, which maps the logits
L to a mapped value using the function

1
1+etL’

These mapped values are normalized to produce probabili-
ties for one of multiple (e.g., 5) potential item values.

[0122] The digital experience enhancement recommenda-
tion 206 output by the mapping and normalization layer 410
is a set of probability distributions on the multiple potential
rating values. For example, if there are 5 potential rating
values for a movie, the digital experience enhancement
recommendation 206 can be a vector [0.01 0.04 0.10 0.75
0.10] to indicate that there is a 1% chance of the rating being
the first rating value, a 4% chance of the rating being the
second rating value, a 10% chance of the rating being the
third rating value, a 75% chance of the rating being the
fourth rating value, and a 10% chance of the rating being the

Oct. 8, 2020

fifth rating value. This can be viewed as a recommendation
of a rating value of the fourth rating value.

[0123] The neural network 402 in the example 400 is
trained to minimize the cross-entropy loss between the
ground truth and the digital experience enhancement rec-
ommendation 206 output by the mapping and normalization
layer 410. The ground truth can be represented as, for
example, a one-hot vector. During training, weights of the
neural network 402 can be updated using various tech-
niques. In one or more implementations, weights of the
neural network 402 are updated using stochastic gradient
descent with Nesterov momentum.

[0124] FIG. 5 illustrates another example 500 of a neural
network 502. The neural network 502 can be, for example,
the neural network 204 of FIG. 2 or FIG. 3. The neural
network 502 includes an input layer 504, a hidden layer 506,
and an output layer 508. The estimator output values 210 are
fed into the input layer 504, the hidden layer 506 implements
rectified linear activation, and the output layer 508 outputs
single valued outputs. For a particular set of estimator output
values 210 (e.g., generated from a sample of training data or
an enhancement request 208), the neural network 502 gen-
erates a single value output as the digital experience
enhancement recommendation 206. For example, if the
potential rating values for a movie are “17, “27, “3”, “4”, or
“5”, then the single value output as the digital experience
enhancement recommendation 206 can be “4”.

[0125] The neural network 502 in the example 500 is
trained to minimize the root mean square error between the
ground truth and the digital experience enhancement rec-
ommendation 206 output by the output layer 508. The
ground truth can be represented as, for example, a single
value (the ground truth value). During training, weights of
the neural network 204 can be updated using various tech-
niques. In one or more implementations, weights of the
neural network 204 are updated using the Adam optimiza-
tion algorithm.

[0126] Thus, as can be seen from the discussion herein,
there are numerous different classes of estimators that can be
used in the estimator ensemble 202, different types of
estimators within a class of estimators, different configura-
tion settings for the different estimators, and different loss
functions for the different estimators. In light of all these
different options, rather than being a small or easily tra-
versed number of different combinations of estimators,
configuration settings, and loss functions that can be used in
the estimator ensemble 202, there are a large number of
different combinations of estimators, configuration settings,
and loss functions that can be used in the estimator ensemble
202. At least one technique the inventors have discovered is
that including at least one estimator from each of the
singular value decomposition (SVD) estimators 212, the
neighborhood and clustering estimators 214, the factoriza-
tion estimators 216, the gradient boosting estimators 218,
the time-aware estimators 220, and the variational autoen-
coder (VAE) estimators 222, combined with training the
neural network 204 to minimize root mean square error or
cross-entropy loss as discussed above, provides a recom-
mendation performance that exceeds the performance pro-
vided by conventional techniques.

US 2020/0320382 Al

[0127] Example Procedures

[0128] The following discussion describes techniques that
may be implemented utilizing the previously described
systems and devices. Aspects of the procedure may be
implemented in hardware, firmware, software, or a combi-
nation thereof The procedure is shown as a set of blocks that
specify operations performed by one or more devices and
are not necessarily limited to the orders shown for perform-
ing the operations by the respective blocks. In portions of the
following discussion, reference will be made to FIGS. 1-5.
[0129] FIG. 6 is a flow diagram depicting a procedure in
an example implementation of digital experience enhance-
ment using an ensemble deep learning model. In this
example, a request for a recommendation to enhance the
digital experience for a user is received (block 602). The
request includes an indication of past user interactions of the
user with the digital experience. These past user interactions
can take various forms, such as ratings provided by the user
for content.

[0130] Multiple estimation values are generated using an
estimator ensemble and based on the indication of past user
interactions (block 604). At least one of the multiple esti-
mation values is generated by each of multiple estimators
included in an estimator ensemble. The estimator ensemble
includes a singular value decomposition estimator, a neigh-
borhood or clustering estimator, a factorization estimator, a
time-aware estimator, a variational autoencoder estimator,
and a gradient boosting estimator.

[0131] The recommendation to enhance the digital expe-
rience for the user is generated using a neural network and
based on the multiple estimation values (block 606). The
recommendation can be, for example, a set of probability
distributions on multiple potential values or a single value
output.

[0132] The digital experience is enhanced based on the
recommendation (block 608), and the enhanced digital expe-
rience is displayed (block 610). The enhancement of the
digital experience can take various forms as discussed
above, such as providing a value for an item (e.g., a rating
for a movie), a font or color to use for a Web page, and so
forth.

[0133] FIG. 7 is a flow diagram depicting a procedure in
an example implementation of digital experience enhance-
ment using an ensemble deep learning model. In this
example, a first training data set is obtained (block 702). The
first training data set includes, for each of multiple users,
values associated with the user for particular items.

[0134] Each of multiple estimators in an estimator
ensemble are trained using the first training data set (block
704). The multiple estimators include a singular value
decomposition estimator, a neighborhood or clustering esti-
mator, a factorization estimator, a time-aware estimator, a
variational autoencoder estimator, and a gradient boosting
estimator.

[0135] A second training data set is also obtained (block
706). The second training data set includes, for each of the
multiple users, values associated with the user for particular
items.

[0136] Multiple estimation values are generated using the
estimator ensemble and based on the second training data set
(block 708). An estimation value is generated by each of the
estimators in the estimator ensemble.

[0137] A neural network is trained using the multiple
estimation values generated by the estimator ensemble

Oct. 8, 2020

(block 710). The neural network is trained to generate a
recommendation to enhance the digital experience for the
user.

[0138] The digital experience for the user is enhanced
using the recommendation from the neural network (block
712). The enhancement of the digital experience can take
various forms as discussed above, such as providing a value
for an item (e.g., a rating for a movie), a font or color to use
for a Web page, and so forth.

[0139] Example System and Device

[0140] FIG. 8 illustrates an example system generally at
800 that includes an example computing device 802 that is
representative of one or more computing systems and/or
devices that may implement the various techniques
described herein. This is illustrated through inclusion of the
digital experience enhancement system 122. The computing
device 802 may be, for example, a server of a service
provider, a device associated with a client (e.g., a client
device), an on-chip system, and/or any other suitable com-
puting device or computing system.

[0141] The example computing device 802 as illustrated
includes a processing system 804, one or more computer-
readable media 806, and one or more I/O interface 808 that
are communicatively coupled, one to another. Although not
shown, the computing device 802 may further include a
system bus or other data and command transfer system that
couples the various components, one to another. A system
bus can include any one or combination of different bus
structures, such as a memory bus or memory controller, a
peripheral bus, a universal serial bus, and/or a processor or
local bus that utilizes any of a variety of bus architectures.
A variety of other examples are also contemplated, such as
control and data lines.

[0142] The processing system 804 is representative of
functionality to perform one or more operations using hard-
ware. Accordingly, the processing system 804 is illustrated
as including hardware element 810 that may be configured
as processors, functional blocks, and so forth. This may
include implementation in hardware as an application spe-
cific integrated circuit or other logic device formed using
one or more semiconductors. The hardware elements 810 are
not limited by the materials from which they are formed or
the processing mechanisms employed therein. For example,
processors may be comprised of semiconductor(s) and/or
transistors (e.g., electronic integrated circuits (ICs)). In such
a context, processor-executable instructions may be elec-
tronically-executable instructions.

[0143] The computer-readable storage media 806 is illus-
trated as including memory/storage 812. The memory/stor-
age 812 represents memory/storage capacity associated with
one or more computer-readable media. The memory/storage
component 812 may include volatile media (such as random
access memory (RAM)) and/or nonvolatile media (such as
read only memory (ROM), Flash memory, optical disks,
magnetic disks, and so forth). The memory/storage compo-
nent 812 may include fixed media (e.g., RAM, ROM, a fixed
hard drive, and so on) as well as removable media (e.g.,
Flash memory, a removable hard drive, an optical disc, and
so forth). The computer-readable media 806 may be con-
figured in a variety of other ways as further described below.
[0144] Input/output interface(s) 808 are representative of
functionality to allow a user to enter commands and infor-
mation to computing device 802, and also allow information
to be presented to the user and/or other components or

US 2020/0320382 Al

devices using various input/output devices. Examples of
input devices include a keyboard, a cursor control device
(e.g., a mouse), a microphone, a scanner, touch functionality
(e.g., capacitive or other sensors that are configured to detect
physical touch), a camera (e.g., which may employ visible or
non-visible wavelengths such as infrared frequencies to
recognize movement as gestures that do not involve touch),
and so forth. Examples of output devices include a display
device (e.g., a monitor or projector), speakers, a printer, a
network card, tactile-response device, and so forth. Thus, the
computing device 802 may be configured in a variety of
ways as further described below to support user interaction.

[0145] Various techniques may be described herein in the
general context of software, hardware elements, or program
modules. Generally, such modules include routines, pro-
grams, objects, elements, components, data structures, and
so forth that perform particular tasks or implement particular
abstract data types. The terms “module,” “functionality,”
and “component” as used herein generally represent soft-
ware, firmware, hardware, or a combination thereof. The
features of the techniques described herein are platform-
independent, meaning that the techniques may be imple-
mented on a variety of commercial computing platforms
having a variety of processors.

[0146] An implementation of the described modules and
techniques may be stored on or transmitted across some
form of computer-readable media. The computer-readable
media may include a variety of media that may be accessed
by the computing device 802. By way of example, and not
limitation, computer-readable media may include “com-
puter-readable storage media” and “computer-readable sig-
nal media.”

[0147] “Computer-readable storage media” refers to
media and/or devices that enable persistent and/or non-
transitory storage of information in contrast to mere signal
transmission, carrier waves, or signals per se. Computer-
readable storage media is non-signal bearing media. The
computer-readable storage media includes hardware such as
volatile and non-volatile, removable and non-removable
media and/or storage devices implemented in a method or
technology suitable for storage of information such as
computer readable instructions, data structures, program
modules, logic elements/circuits, or other data. Examples of
computer-readable storage media may include, but are not
limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, hard disks, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or other storage device, tangible
media, or article of manufacture suitable to store the desired
information and which may be accessed by a computer.

[0148] “Computer-readable signal media” refers to a sig-
nal-bearing medium that is configured to transmit instruc-
tions to the hardware of the computing device 802, such as
via a network. Signal media typically may embody com-
puter readable instructions, data structures, program mod-
ules, or other data in a modulated data signal, such as carrier
waves, data signals, or other transport mechanism. Signal
media also include any information delivery media. The
term “modulated data signal” means a signal that has one or
more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example,
and not limitation, communication media include wired

Oct. 8, 2020

media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared, and other
wireless media.

[0149] As previously described, hardware elements 810
and computer-readable media 806 are representative of
modules, programmable device logic and/or fixed device
logic implemented in a hardware form that may be
employed in some implementations to implement at least
some aspects of the techniques described herein, such as to
perform one or more instructions. Hardware may include
components of an integrated circuit or on-chip system, an
application-specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), a complex programmable
logic device (CPLD), and other implementations in silicon
or other hardware. In this context, hardware may operate as
a processing device that performs program tasks defined by
instructions and/or logic embodied by the hardware as well
as a hardware utilized to store instructions for execution,
e.g., the computer-readable storage media described previ-
ously.

[0150] Combinations of the foregoing may also be
employed to implement various techniques described herein.
Accordingly, software, hardware, or executable modules
may be implemented as one or more instructions and/or
logic embodied on some form of computer-readable storage
media and/or by one or more hardware elements 810. The
computing device 802 may be configured to implement
particular instructions and/or functions corresponding to the
software and/or hardware modules. Accordingly, implemen-
tation of a module that is executable by the computing
device 802 as software may be achieved at least partially in
hardware, e.g., through use of computer-readable storage
media and/or hardware elements 810 of the processing
system 804. The instructions and/or functions may be
executable/operable by one or more articles of manufacture
(for example, one or more computing devices 802 and/or
processing systems 804) to implement techniques, modules,
and examples described herein.

[0151] The techniques described herein may be supported
by various configurations of the computing device 802 and
are not limited to the specific examples of the techniques
described herein. This functionality may also be imple-
mented all or in part through use of a distributed system,
such as over a “cloud” 814 via a platform 816 as described
below.

[0152] The cloud 814 includes and/or is representative of
a platform 816 for resources 818. The platform 816 abstracts
underlying functionality of hardware (e.g., servers) and
software resources of the cloud 814. The resources 818 may
include applications and/or data that can be utilized while
computer processing is executed on servers that are remote
from the computing device 802. Resources 818 can also
include services provided over the Internet and/or through a
subscriber network, such as a cellular or Wi-Fi network.

[0153] The platform 816 may abstract resources and func-
tions to connect the computing device 802 with other
computing devices. The platform 816 may also serve to
abstract scaling of resources to provide a corresponding
level of scale to encountered demand for the resources 818
that are implemented via the platform 816. Accordingly, in
an interconnected device embodiment, implementation of
functionality described herein may be distributed throughout
the system 800. For example, the functionality may be

US 2020/0320382 Al

implemented in part on the computing device 802 as well as
via the platform 816 that abstracts the functionality of the
cloud 814.

CONCLUSION

[0154] Although the invention has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as example forms of implementing the
claimed invention.

What is claimed is:

1. In a digital medium environment to enhance a digital
experience for a user, a method implemented by at least one
computing device, the method comprising:

receiving a request for a recommendation to enhance the

digital experience for the user, the request including an
indication of past user interactions of the user with the
digital experience;

generating, using an estimator ensemble and based on the

indication of past user interactions, multiple estimation
values, at least one of the multiple estimation values
being generated by each of a singular value decompo-
sition estimator, a neighborhood or clustering estima-
tor, a factorization estimator, a time-aware estimator, a
variational autoencoder estimator, and a gradient boost-
ing estimator included in the estimator ensemble;
generating, using a neural network and based on the
multiple estimation values, the recommendation to
enhance the digital experience for the user;
enhancing the digital experience based on the recommen-
dation to generate an enhanced digital experience; and
displaying the enhanced digital experience.

2. The method as recited in claim 1, the recommendation
being one of multiple potential values, the neural network
comprising a 3-layer neural network followed by a mapping
and normalization layer, the mapping and normalization
layer outputting the recommendation as a set of probability
distributions on the multiple values.

3. The method as recited in claim 2, the neural network
having been trained to minimize cross-entropy loss between
the recommendation and a one-hot representation of a
ground truth.

4. The method as recited in claim 1, the recommendation
being one of multiple potential values, the neural network
comprising a 3-layer neural network outputting the recom-
mendation as a single value output.

5. The method as recited in claim 4, the neural network
having been trained to minimize root mean square error
between the recommendation and a ground truth value.

6. The method as recited in claim 1, the past user
interactions including values provided by the user for dif-
ferent items included in the digital experience.

7. The method as recited in claim 6, the past user
interactions further including a time feature that indicates,
for a particular item, a time that the particular item was first
available to the user.

8. The method as recited in claim 6, the past user
interactions further including a time feature that indicates,
for a particular item, a time that the user provided the value
for the particular item.

Oct. 8, 2020

9. The method as recited in claim 6, the past user
interactions further including a time feature that indicates a
time that the user first provided a value for any of the
different items.

10. The method as recited in claim 6, the past user
interactions further including a time feature that indicates,
for a particular item, a timespan between a time that the
particular item was first available to the user and a time that
the user provided the value for the particular item.

11. In a digital medium environment to enhance a digital
experience for a user, a method implemented by at least one
computing device, the method comprising:

obtaining a first training data set that includes, for each of

multiple users, values associated with the user for
particular items;

training, using the first training data set, each of a singular

value decomposition estimator, a neighborhood or clus-
tering estimator, a factorization estimator, a time-aware
estimator, a variational autoencoder estimator, and a
gradient boosting estimator in an estimator ensemble to
generate an estimation value;

obtaining a second training data set that includes, for each

of the multiple users, values associated with the user for
particular items;
generating, using the estimator ensemble and based on the
second training data set, multiple estimation values;

training, using the multiple estimation values, a neural
network to generate a recommendation to enhance the
digital experience for the user; and

enhancing, using the recommendation, the digital expe-

rience for the user.

12. The method as recited in claim 11, the recommenda-
tion being one of multiple potential values, the neural
network comprising a 3-layer neural network followed by a
mapping and normalization layer, the mapping and normal-
ization layer outputting the recommendation as a set of
probability distributions on the multiple values, and the
training the neural network comprising training the neural
network to minimize cross-entropy loss between the recom-
mendation and a one-hot representation of a ground truth.

13. The method as recited in claim 11, the recommenda-
tion being one of multiple potential values, the neural
network comprising a 3-layer neural network outputting the
recommendation as a single value output, the training the
neural network comprising training the neural network to
minimize root mean square error between the recommen-
dation and a ground truth value.

14. A system comprising:

means for generating, based on an indication of past user

interactions of a user with a digital experience, at least
one of multiple estimation values from each of a
singular value decomposition estimator, a neighbor-
hood or clustering estimator, a factorization estimator,
a time-aware estimator, a variational autoencoder esti-
mator, and a gradient boosting estimator included in an
estimator ensemble;

means for generating, based on the multiple estimation

values, a recommendation to enhance the digital expe-
rience for the user; and

means for displaying, based on the recommendation to

enhance the digital experience for the user, an enhanced
digital experience.

15. The system as recited in claim 14, the recommenda-
tion being one of multiple potential values, the means for

US 2020/0320382 Al Oct. 8, 2020
16

generating the recommendation comprising a 3-layer neural
network followed by a mapping and normalization layer, the
mapping and normalization layer outputting the recommen-
dation as a set of probability distributions on the multiple
values.

16. The system as recited in claim 15, the neural network
having been trained to minimize cross-entropy loss between
the recommendation and a one-hot representation of a
ground truth.

17. The system as recited in claim 14, the recommenda-
tion being one of multiple potential values, the means for
generating the recommendation comprising a 3-layer neural
network outputting the recommendation as a single value
output.

18. The system as recited in claim 17, the neural network
having been trained to minimize root mean square error
between the recommendation and a ground truth value.

19. The system as recited in claim 14, the past user
interactions including values provided by the user for dif-
ferent items included in the digital experience.

20. The system as recited in claim 19, the different items
including movies and the values comprising movie ratings.

#* #* #* #* #*

