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DIGITAL EXPERIENCE ENHANCEMENT
USING AN ENSEMBLE DEEP LEARNING
MODEL

BACKGROUND

As computer technology has advanced computers have
become increasingly commonplace i our lives. With this
increased presence in our lives, developers and designers
strive to provide the best digital experience they can for each
user. The digital experience for a user refers to the infor-
mation that the computer provides to the user and the
manner 1n which that information 1s provided to the user. For
example, the digital experience can include making recoms-
mendations for content the user may enjoy (e.g., movies,
music, books), providing offers or promotions to the user,
the manner 1n which a web site 1s displayed (e.g., the colors
used, the fonts used), and so forth.

Providing the best digital experience for each user 1s very
beneficial for the users because 1t provides the users with the
digital experience that they want. However, current attempts
by designers and developers to provide the best digital
experience they can for each user have not been without
their problems. One such problem 1s the accuracy of success
in creating such digital experiences 1s very low, which leads
to poor digital experiences for the users. Such poor digital
experiences can result in user frustration with their comput-
ers and service providers.

SUMMARY

To mitigate the problem of poor digital experiences being
provided to users, the digital experience for a user 1s
enhanced based on past interactions of the user with the
digital experience. A request for a recommendation to
enhance the digital experience for the user is received, the
request including an indication of past user interactions of
the user with the digital experience. Multiple estimation
values are generated, using an estimator ensemble and based
on the indication of past user interactions. At least one of the
multiple estimation values 1s generated by each of a singular
value decomposition estimator, a neighborhood or clustering
estimator, a factorization estimator, a time-aware estimator,
a variational autoencoder estimator, and a gradient boosting
estimator included 1n the estimator ensemble. The recom-
mendation to enhance the digital experience for the user 1s
generated, using a neural network, based on the multiple
estimation values. The digital experience 1s enhanced based
on the recommendation, and the enhanced digital experience
1s displayed.

In one or more implementations, an ensemble deep learn-
ing model 1s tramned to generated recommendations to
enhance the digital experience for a user. A first training data
set 1s obtained, the first training data set including, for each
of multiple users, values associated with the user for par-
ticular 1items. The estimators 1n an estimator ensemble are
cach trained, using the first training data set, to generate an
estimation value. The estimators 1n the estimator ensemble
include a singular value decomposition estimator, a neigh-
borhood or clustering estimator, a factorization estimator, a
time-aware estimator, a variational autoencoder estimator,
and a gradient boosting estimator. A second traiming data set
1s obtained that includes, for each of the multiple users,
values associated with the user for particular items. Multiple
estimation values are generated, using the estimator
ensemble, based on the second traiming data set. A neural
network 1s trained, using the multiple estimation values, to
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2

generate a recommendation to enhance the digital experi-
ence for the user. The digital experience 1s enhanced using
the recommendation.

This Summary introduces a selection of concepts 1n a
simplified form that are further described below i the
Detailed Description. As such, this Summary 1s not intended
to 1dentily essential features of the claimed subject matter,
nor 1s i1t mtended to be used as an aid 1n determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF TH.

L1l

DRAWINGS

The detailed description 1s described with reference to the
accompanying figures. Entities represented in the figures
may be indicative of one or more entities and thus reference
may be made mterchangeably to single or plural forms of the
entities in the discussion.

FIG. 1 1s an 1llustration of a digital medium environment
in an example implementation that 1s operable to employ the
digital experience enhancement using an ensemble deep
learning model techniques described herein.

FIG. 2 1s an 1illustration of an example architecture of a
digital experience enhancement system.

FIG. 3 illustrates an example of training the ensemble
deep learning model.

FIG. 4 illustrates an example of a neural network.

FIG. § illustrates another example of a neural network.

FIG. 6 1s a flow diagram depicting a procedure 1n an
example implementation of digital experience enhancement
using an ensemble deep learning model.

FIG. 7 1s a flow diagram depicting a procedure in an
example implementation of digital experience enhancement
using an ensemble deep learning model.

FIG. 8 illustrates an example system including various
components of an example device that can be implemented
as any type of computing device as described and/or utilized
with reference to FIGS. 1-7 to implement aspects of the
techniques described herein.

DETAILED DESCRIPTION

Overview

Digital experience enhancement using an ensemble deep
learning model 1s discussed herein. Generally, a digital
experience generation system creates content for display,
providing a digital experience to the user. The digital expe-
rience generation system leverages an ensemble deep learn-
ing model that generates recommendations to enhance the
digital experience. These enhancements can take various
forms, such as recommendations of movies to watch or
books to read, recommendations regarding whether to pres-
ent offers or advertisements to a user, recommendations for
web page display settings (e.g., fonts or colors), and so forth.
The ensemble deep learning model 1s trained to generate
recommendations to enhance digital experiences, and the
digital experience generation system uses the recommenda-
tions to enhance digital experiences.

More specifically, the digital experience enhancement
system 1ncludes an ensemble deep learning model that 1s
trained to generate a digital experience enhancement rec-
ommendation from an enhancement request. The ensemble
deep learning model includes an estimator ensemble and a
neural network. The ensemble deep learning model receives
the enhancement request, which 1s input to the estimator
ensemble. The estimator ensemble uses various diflerent
machine learning systems, referred to as estimators, to
generate estimator output values. The neural network uses
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the estimator output values from the estimator ensemble to
generate a digital experience enhancement recommendation.
The digital experience generation system then uses this
digital experience enhancement recommendation to enhance
the digital experience.

The ensemble deep learming model can be trained for use
in various different digital experience use scenarios, such as
movie recommendations, book recommendations, offer or
promotion selection, web page display characteristics, and
so forth. The ensemble deep learning model 1s trained 1n a
two-stage process using a first training data set and a second
training data set. The first training data set and the second
training data set include traiming data specific to the digital
experience use scenario that the ensemble deep learning
model 1s being trained for. For example, 1 the ensemble
deep learning model 1s being trained to generate movie
recommendations, then each sample of training data 1n the
training data set includes data for multiple users and, for
cach of the multiple users, ratings that the user gave movies
in the past. Each sample of training data in the training data
set also includes known ratings (the ground truths) for
multiple movies that the ensemble deep learning model 1s
generating a prediction for.

In a first stage, the estimators 1n the estimator ensemble
are trained using the first training data set. Each estimator 1n
the estimator ensemble generates an estimator output value
for each sample of training data. In the first stage, for each
estimator in the estimator ensemble, the estimator output
value from the estimator for a sample of training data 1s
compared to the ground truth for the sample of traiming data.
Each estimator includes various filters or nodes with weights
that are tuned (e.g., trained) to minimize the loss between the
ground truth for the sample of traiming data and the estimator
output value for the sample of training data.

After the first stage 1s completed, a second stage 1s
performed. In the second stage, the second training data set
1s provided to the estimators 1n the estimator ensemble, each
of which generates an estimator output value for each
sample of tramning data. However, rather than using those
estimator output values to train the estimators in the esti-
mator ensemble, 1n the second stage the estimator output

values are input to the neural network. For each sample of

training data m the second training data set, the neural
network generates a digital experience enhancement recom-
mendation based on the estimator output values generated
by the estimators 1n the estimator ensemble from the second
training data set. The neural network includes various filters
or nodes with weights that are tuned (e.g., trained) to
mimmize the loss between the ground truth for the sample
of tramming data and the digital experience enhancement
recommendation for the sample of training data.

Training the ensemble deep learning model 1n two stages
improves the digital experience enhancement recommenda-
tions provided by the ensemble deep learning model as a
result of the estimators in the estimator ensemble being
trained on a set of training data and the neural network being
tramned on a set ol estimator output values (which are
recommendations provided by the estimators). Each recom-
mendations 1s trained to generate estimator output values
from the traiming data set, whereas the neural network 1s
tramned to generate recommendations (digital experience
enhancement recommendations) from the estimators in the
estimator ensemble.

The estimator ensemble includes multiple estimators of

different classes or types, also referred to as estimators.
These classes of estimators include singular value decom-
position (SVD) estimators, neighborhood and clustering
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4

estimators, time-aware estimators, factorization estimators,
gradient boosting estimators, and variational autoencoder
(VAE) estimators.

SVD estimators refer to machine learning systems that
generate values (e.g., missing entries 1n a matrix) using
singular value decomposition. Neighborhood and clustering
estimators refer to machine learning systems that generate
values (e.g., missing entries 1n a matrix) based on the k
nearest entry values to the missing entry or on entry values
in a same cluster as the missing entry. Factorization estima-
tors refer to machine learning systems that decompose a
matrix into the product of two matrices of lower dimension-
ality.

Time-aware estimators refer to machine learning systems
that leverage time when generating estimator output values.
Various times can be leveraged, such as the time that a value
was provided by a user, a timespan between an item’s
availability (e.g., a movie’s release) and a user providing a
value for the item, and so forth.

Gradient boosting estimators refer to machine learning
systems that iteratively add weak learners to an ensemble of
machine learming systems. VAE estimators refer to machine
learning systems that learn parameters for an autoencoder
using variational inference.

The techniques discussed herein improve the operation of
a computing device by generating better recommendations
on how to enhance the digital experience for a user. The
digital experience generation system leverages these recoms-
mendations, providing enhanced digital experiences that are
better geared towards the user than conventional techniques
allow. This generation of enhanced digital experiences pro-
vides for eflicient use of computational resources by, for
example, reducing the amount of time computational
resources are expended 1n having a user search for content
he or she desires.

Term Descriptions

These term descriptions are provided for purposes of
example only and are not itended to be construed as

limiting on the scope of the claims.

The term “digital experience’ refers to the user interface
that 1s presented to a user of a computing device. The digital
experience includes various diflerent data displayed 1n dii-
ferent manners (e.g., 1n different locations, at different times,
in different fonts, in different colors, and so forth).

The term ““past user interactions™ refers to interactions a
user has previously had with a digital experience. These past
user interactions can include links or web pages selected by
the user, preferences set by the user, content (e.g., movie,
book, music) recommendations made by the user, feedback
provided by the user, and so forth.

The term “1tem” refers to content that can be displayed or
otherwise presented to the user. This content can take
various forms, such as visual content, audible content, and
so forth. Examples of items include movies, books, songs,
oflers, promotions, advertisements, web pages, and so forth.

In the following discussion, an example environment 1s
described that may employ the techniques described herein.
Example procedures are also described which may be per-
formed 1n the example environment as well as other envi-
ronments. Consequently, performance of the example pro-
cedures 1s not limited to the example environment and the
example environment 1s not limited to performance of the
example procedures.
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Example Environment

FIG. 1 1s an 1llustration of a digital medium environment
100 1 an example mmplementation that 1s operable to
employ the digital experience enhancement using an
ensemble deep learning model techniques described herein.
The 1illustrated environment 100 includes a computing
device 102, which may be configured 1n a variety of ways.
The computing device 102, for instance, may be configured
as a desktop computer, a server computer, a laptop computer,
a mobile device (e.g., assuming a handheld configuration
such as a tablet or mobile phone), a wearable device (e.g.,
augmented reality or virtual reality headsets), and so forth.
Thus, the computing device 102 may range from {tull
resource devices with substantial memory and processor
resources (e.g., personal computers, game consoles) to a
low-resource device with limited memory and/or processing
resources (e.g., mobile devices). Additionally, although a
single computing device 102 1s shown, the computing
device 102 may be representative of a plurality of different
devices, such as multiple servers utilized by a business to
perform operations “over the cloud” as described 1n FIG. 8.

The computing device 102 1s illustrated as including a
digital experience generation system 104. The digital expe-
rience generation system 104 1s implemented at least par-
tially 1in hardware of the computing device 102 to process
and transform content 106, which i1s illustrated as main-
tained 1n storage 108 of the computing device 102. Such
processing includes creation of the content 106, and render-
ing of the content 106 1n a user 1intertace 114 for output, e.g.,
by a display device 116 and/or playback by a speaker of the
computing device 102. The content 106 can take various
forms, such as 1mage content, video content, mixed media
content, and so forth. The storage 108 can be any of a variety
of different types of storage, such as random access memory
(RAM), Flash memory, solid state drive, magnetic disk
drive, and so forth. Although illustrated as implemented
locally at the computing device 102, functionality of the
digital experience generation system 104 may also be imple-
mented 1n whole or part via functionality available via the
network 118, such as part of a web service or “in the cloud.”

The digital experience generation system 104 creates
content for display on the user interface 114, providing a
digital experience to the user. The digital experience gen-
cration system 104 leverages a digital experience enhance-
ment system 122 to facilitate creating the digital experience.
The digital experience enhancement system 122 includes an
ensemble deep learning model 124 that provides input to the
digital experience generation system 104 regarding how to
enhance the digital experience for the user. Although 1llus-
trated as implemented locally at the computing device 102,
functionality of the digital experience enhancement system
122 may also be implemented in whole or part via func-
tionality available via the network 118, such as part of a web
service or “in the cloud.”

Enhancing the digital experience for the user refers to
making the digital experience better for the user. For
example, the ensemble deep learning model 124 can gen-
erate rankings for content (e.g., movies, music, books) that
the digital experience generation system 104 can display to
the user, can 1dentily offers or promotions that the digital
experience generation system 104 can display to the user,
can 1dentily the manner 1n which a web site provided by the
digital experience generation system 104 1s displayed (e.g.,
the colors used, the fonts used), and so forth.

An example of the enhanced digital experience 1s 1llus-
trated 1n FIG. 1. A web site or page with a title 126 providing,
a movie or television recommendation 128 1s displayed. The
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digital experience generation system 104 determines which
of multiple movie or television programs to recommend
based on input from the digital experience enhancement
system 122. Furthermore, the font of the title 126 and/or
recommendation 128 1s also optionally determined by the
digital experience generation system 104 based on input
from the digital experience enhancement system 122.

Digital Experience Enhancement System Architecture

FIG. 2 1s an illustration of an example architecture of a
digital experience enhancement system 122. The digital
experience enhancement system 122 includes an ensemble
deep learning model 124 that includes an estimator
ensemble 202 and a neural network 204. The ensemble deep
learning model 124 1s trained to generate a digital experi-
ence enhancement recommendation 206 from an enhance-
ment request 208. Generally, the ensemble deep learning
model 124 recerves the enhancement request 208, which 1s
input to the estimator ensemble 202. The estimator ensemble
202 uses various different estimators (machine learning
systems) to generate estimation values, illustrated as esti-
mator output values 210. The neural network 204 uses the
estimator output values 210 to generate the digital experi-
ence enhancement recommendation 206.

Machine learning systems refer to a computer represen-
tation that can be tuned (e.g., trained) based on inputs to
approximate unknown functions. In particular, machine
learning systems can include a system that utilizes algo-
rithms to learn from, and make predictions on, known data
by analyzing the known data to learn to generate outputs that
reflect patterns and attributes of the known data. For
instance, a machine learning system can include decision
trees, support vector machines, linear regression, logistic
regression, Bayesian networks, random forest learning,
dimensionality reduction algorithms, boosting algorithms,
artificial neural networks, deep learning, and so forth. Spe-
cific types of machine learning systems used by the
ensemble deep learning model 124 are discussed in more
detail below.

The machine learning systems include various filters or
nodes with weights that, during training, are tuned (e.g.,
trained) to minimize the loss between a known value and a
predicted value generated by the machine learning system.
Any of a variety of loss functions or algorithms can be used
to train the machine learning systems, such as a cross-
entropy loss function, a mean squared error, and so forth.
Specific loss functions used to train the machine learning
systems used by the ensemble deep learning model 124 are
discussed 1n more detail below.

The ensemble deep learning model 124 is tramned to
generate, given an enhancement request 208, a digital expe-
rience enhancement recommendation 206 for a particular
digital experience use scenario. The ensemble deep learning
model 124 can be used for various different digital experi-
ence use scenarios, such as movie recommendations, book
recommendations, offer or promotion selection, web page
display characteristics, and so forth. The ensemble deep
learning model 124 1s trained 1n a two-stage process. In the
first stage, the estimators 1n the estimator ensemble 202 are
trained using a set of training data. In the second stage, an
additional set of training data 1s provided to the estimators
in the estimator ensemble 202. The estimators in the esti-
mator ensemble 202 generate estimator output values that
are used to train the neural network 204. This two-stage
process of training the ensemble deep learning model 124 1s
discussed in more detail below.

The ensemble deep learning model 124 can be viewed as
solving a matrix completion problem. In one or more
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implementations, a matrix M 1s an mxn matrix where entry
M, €11, ..., s} contains user i’s value for an item j, where
values for items range from 1 to s (e.g., 1 being bad, such as
a single star or “hated” and 5 being good, such as 5 stars or
“loved”). Some users will not have values for all items, so
the corresponding entries in the matrix M are empty or zero.
For example, the items ] may be movies, the matrix entries
may be movie rating values, and the value s may be 3. In this
example, entry M, , €{1, . . ., 5} contains user i’s rating
value for a movie _] By way of another example, the items
may be oflers or promotions that were previously presented
to the user, the matrix entries may be indications of whether
those oflers or promotions were accepted by the user (e.g.,
0 for accepted, 1 for not accepted), and the value s may be
2. In this example, entry M, &1, , 2} contains an
indication of whether user 1 previously accepted an offer or
promotion 7. It should be noted that additional information
can be associated with the matrix M and used by various
estimators 1n the estimator ensemble 202. In one or more
implementations this additional information includes time
information, such as the time that a value was provided by
a user, a timespan between an 1tem’s availability and a user
providing a value for the 1tem, a timespan (e.g., a number of
days or years) between an item’s availability and a user
providing a value for the item, and so forth.

The matrix completion problem aims to recover the
matrix M from a subset 2=[m|x|[n] of 1ts entries. Given the
subset 2, P (M) denotes the prOJectlon of matrix M onto
the subset £2, which amounts to zeroing out unobserved
(empty) elements of the matrix M.

The ensemble deep learning model 124 receives the
enhancement request 208, which 1s a request for a recom-
mendation on how to enhance (e.g., improve) the digital
experience for a user. The enhancement request 208 includes
an 1dentification of a user’s past interactions with digital
experiences. These past user interactions can be past user
interactions with the digital experience generation system
104, or alternatively past user interactions with other sys-
tems or devices that the digital experience generation system
104 has access to. The type of past user interactions with
digital experiences included 1n the enhancement request 208
depends on the digital experience use scenario that the
ensemble deep learning model 124 1s trained for. The past
user interactions with digital experiences can be provided as,
for example, the matrix M discussed above. The enhance-
ment request 208 also optlonally includes an 1dentifier of at
least one 1tem (e.g., movie, ofler or promotion, etc.) that the
recommendation 1s to be provided for. The ensemble deep
learning model 124 generates the digital experience
enhancement recommendation 206 based on the enhance-
ment request 208. The value(s) output as the digital expe-
rience enhancement recommendation 206 depends on the
digital experience use scenario that the ensemble deep
learning model 124 i1s trained for.

The ensemble deep learning model 124 can be used for
various different digital experience use scenarios. In one or
more embodiments, the digital experience enhancement
request 206 generated by the ensemble deep learning model
124 1s one of multiple potential values that an item may
have. One example digital experience use scenario 1s movie
recommendations, where the ensemble deep learning model
124 1s trained to generate movie recommendations. In this
example, the enhancement request 208 includes an 1dentifier
of at least one movie that the digital experience generation
system 104 desires a prediction for, and includes as the past
user interactions ratings that the user gave movies 1n the
past. The digital experience enhancement recommendation
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206 1s a value (e.g., a numerical value from 1 to 35) that 1s a
prediction of what the user would rate a partlcular movie.
Another example use scenario 1s offer or promotlon
selection, where the ensemble deep learning model 124 1s
trained to generate predictions of whether a user will accept
a particular offer or promotion. In this example, the enhance-
ment request 208 includes an identifier of at least one ofler
or promotion that the digital experience generation system
104 desires a prediction for, and includes as the past user
interactions 1dentifiers of ofli

ers or promotions that were
prevmusly presented to the user and an indication of whether
those oflers or promotions were accepted by the user. The
digital experience enhancement recommendation 206 1s
value that 1s a prediction of whether the user would accept
the offer or promotion. Such a value could be a Boolean
value (e.g., indicating either Yes or No), a value between O
and 1 indicating the probability that the user would accept
the offer or promotion, and so forth.

Another example use scenario 1s ofler (or advertisement)
presentation determination, where the ensemble deep learn-
ing model 124 1s trained to generate predictions of whether
it 1s better to present an ofler (or advertisement) to the user
during the digital experience, or better to not present an ofler
(or advertisement) to the user during the digital experience.
In this example, the enhancement request 208 includes as the
past user interactions indications of whether the user
accepted any ofler (or advertisement) during particular types
of digital experiences. The digital experience enhancement
recommendation 206 1s a value that 1s a prediction of
whether 1t 1s better to present or not present an offer (or
advertisement) to the user during a particular digital expe-
rience. Such a value could be a Boolean value (e.g., indi-
cating either Yes or No), a value between O and 1 indicating
the probabaility that 1t would be better to present the offer (or
advertisement) to the user during the particular digital
experience.

Another example use scenario 1s web design selection,
where the ensemble deep learning model 124 1s trained to
generate predictions of how to display a web site (e.g., the
colors used, the fonts used). In this example, the enhance-
ment request 208 includes as the past user interactions
identifiers of settings made or preferences of the user (e.g.,
color settings, font settings). The digital experience
enhancement recommendation 206 1s a value that 1s a
prediction of what display settings to use for the web site,
such as probability values of each of multiple different
colors and/or fonts being preferred by the user.

Another example use scenario 1s link or venue selection,
where the ensemble deep learning model 124 1s trained to
generate predictions of what link or venue to display a user
should be directed to after an initial view or web page 1s
displayed. In this example, the enhancement request 208
includes as the past user interactions 1dentifiers of links or
venues that the user selected or viewed. The digital experi-
ence enhancement recommendation 206 1s a value that 1s a
prediction of what link or venue should be displayed or what
additional web page should be displayed after an initial view
or web page 1s displayed, such as probability values of each
of multiple different links or venues the user should be
directed to.

Another example use scenario 1s product packaging,
where the ensemble deep learning model 124 1s trained to
generate predictions of how to package a product (e.g., how
to display or promote a product as part of the digital
experience). In this example, the enhancement request 208
includes identifiers of different product packaging options,
and includes as the past user interactions identifiers of
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product packaging options that were purchased or selected
by the user. The digital experience enhancement recommen-
dation 206 1s a value that 1s a prediction of what product
packaging option to use for the user, such as probability
values of each of multiple different product packaging >
options being the product packaging option to user for the
user.

Another example use scenario 1s digital experience re-
design timing, where the ensemble deep learning model 124
1s trained to generate predictions of what time(s) 1s best to
re-design the digital experience (e.g., change a web page
design, change links, change offers, etc.). In this example,
the enhancement request 208 includes 1dentifiers of diflerent
times (e.g., hours of the day and/or days of the week), and
includes as the past user interactions indications of, for
example, complaints received when digital experiences have
been re-designed, how many times users attempted to access
the digital experience but were unable to due to a re-design,
and so forth. The digital experience enhancement recom- 3
mendation 206 1s a value that 1s a prediction of what time to
re-design the digital experience, such as probability values
of each of multiple different times being the best time to
re-design the digital experience.

Another example use scenario 1s determining whether to 25
change the digital experience design based on time or the
location of a user, where the ensemble deep learming model
124 1s trained to generate predictions of whether to change
the digital experience design based on time or the location
of a user. In this example, the enhancement request 208 as
the past user interactions indications of, for example, com-
plaints received when digital experiences have been
changed, how many times users attempted to access the
digital experience but were unable to due to a digital
experience change, and so forth. The digital experience
enhancement recommendation 206 1s a value that 1s a
prediction ol whether to change the digital experience
design based on time or the location of a user. Such a value
could be a Boolean value (e.g., indicating either Yes or No), 40
a value between 0 and 1 indicating the probability that 1t
would be better to change the digital experience based on
time rather than location of the user, and so forth.

It should be noted that although various examples of
digital experience use scenarios that the ensemble deep 45
learning model 124 can be used with are discussed herein,
these are merely examples. The ensemble deep learning
model 124 can be used with any of numerous diflerent
digital experience use scenarios.

The digital experience generation system 104 can use this 50
enhancement recommendation 206 to create and display an
enhanced digital experience for the user. In one or more
implementations, the enhancement recommendation 206 1s a
single value (e.g., a movie rating between 1 and 5, a Boolean
value (e.g., indicating either Yes or No), a time to perform 55
an action). If the single value satisfies one or more rules or
criteria (e.g., 1s greater than a threshold value, such as 4, or
1s a Boolean value indicating Yes), then the digital experi-
ence generation system 104 generates an enhanced digital
experience using the particular content (e.g., displays a 60
movie recommendation, displays an offer or promotion, uses
a particular font or color). However, 11 the single value does
not satisty the one or more rules or criteria (e.g., 1s not
greater than a threshold value, such as 4, or 1s a Boolean
value indicating No), then the digital experience generation 65
system 104 does not use that particular content to generate
an enhanced digital experience (e.g., does not display a
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recommendation for a particular movie, does not display a
particular offer or promotion, does not use a particular font
or color).

Additionally or alternatively, the enhancement recom-
mendation 206 1s a probability distribution on a range of
potential values, {1, . . ., s}. For example, the enhancement
request 206 can indicate the probability that the user would
rate a particular movie 1, the probabaility that the user would
rate a particular movie 2, the probabaility that the user would
rate a particular movie 3, the probabaility that the user would
rate a particular movie 4, and the probability that the user
would rate a particular movie 5. The digital experience
generation system 104 can use his probability distribution in
various manners, such as recommending the particular
movie only 1f there 1s at least a threshold probability (e.g.,
80%) that the user would rate the particular movie a 4 or 3.

By way of another example, the enhancement request 206
can indicate the probability that an offer or promotion should
be provided to the user and a probability that an offer or
promotion should not be provided to the user. The digital
experience generation system 104 can use his probability
distribution 1n various manners, such as providing the ofler
or promotion only if there 1s at least a threshold probabaility
(e.g., 80%) that the offer or promotion should be provided to
the user.

By way of another example, the enhancement request 206
can 1ndicate, for each hour 1n the day, a probability that a
re-design of the digital experience should occur during that
hour. The digital experience generation system 104 can use
his probability distribution 1n various manners, such as
re-designing the digital experience during a particular hour
of the day only 1f there 1s at least a threshold probabaility
(e.g., 75%) that the digital experience should be re-designed
during that particular hour of the day.

FIG. 3 illustrates an example 300 of training the ensemble
deep learning model. As discussed above, the ensemble deep
learning model 124 is trained in a two-stage process. Gen-
erally, 1n a first stage 302, the estimators in the estimator
ensemble 202 are trained using a first training data set 304.
In a second stage 306, a second tramning data set 308 1is
provided to the estimators in the estimator ensemble 202. In
the second stage the estimators 1n the estimator ensemble
202 generate estimator output values 310 that are used to
train the neural network 204. The first training data set 304
and the second training data set 308 can be diflerent training
data sets, or alternatively can at least partially overlap (e.g.,
contain some of the same samples).

The first training data set 304 and the second training data
set 308 include training data specific to the digital experi-
ence use scenario that the ensemble deep learning model 124
1s being trained for. For example, 11 the ensemble deep
learning model 124 1s being tramned to generate movie
recommendations, then each sample of training data 1n the
training data set includes data for multiple users and, for
cach of the multiple users, ratings that the user gave movies
in the past. Each sample of training data in the training data
set also includes known ratings (the ground truths) for
multiple movies that the ensemble deep learning model 124
1s generating a prediction for. The example 300 1s discussed
with reference to ensemble deep learning model 124 being
trained to generate movie recommendations, however it
should be noted that the ensemble deep learning model 124
can be trammed for various other digital experience use
scenarios as discussed above.

In the first stage 302, the machine learning systems in the
estimator ensemble 202 are trained using the first training
data set 304. In one or more implementations, the machine
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learning systems 1n the estimator ensemble 202 are trained
individually. Additionally or alternatively, multiple machine
learning systems in the estimator ensemble 202 can be
trained concurrently. Each machine learning system 1n the
estimator ensemble 202 generates an estimator output value
210 for each sample of training data. In the first stage 302,
for each estimators in the estimator ensemble 202, the
estimator output value 210 from the machine learning sys-
tem for a sample of training data 1s compared to the ground
truth for the sample of training data. Each estimator includes
various filters or nodes with weights that are tuned (e.g.,
trained) to minimize the loss between the ground truth for
the sample of training data and the estimator output value
210 for the sample of training data.

After the first stage 302 1s completed, the second stage
306 1s performed. In the second stage 306, the neural
network 204 1s trained using the second training data set
308. The second training data set 308 1s input to the
estimators 1n the estimator ensemble 202, each of which
generates an estimator output value 210 for each sample of
training data. However, rather than using those estimator
output values 210 to train the estimators in the estimator
ensemble 202, 1n the second stage 306 the estimator output
values 210 are mput to the neural network 204. For each
sample of training data 1n the second training data set 308,
the neural network 204 generates a digital experience
enhancement recommendation 206 based on the estimator
output values 210 generated by the estimators in the esti-
mator ensemble 202 from the second training data set 308.
The neural network 204 includes various filters or nodes
with weights that are tuned (e.g., trained) to minimize the
loss between the ground truth for the sample of training data
and the digital experience enhancement recommendation
206 for the sample of training data.

The first stage 302 and the second stage 306 can be fed
with samples from the first training data set 304 and the
second training data set 308 1n various batch sizes (e.g., 512
or 4096 samples). In situations where there are numerous
samples of training data (e.g., millions of samples of training
data), the samples from the first training data set 304 and the
second training data set 308 can be fed with samples in a
single epoch. Additionally or alternatively, multiple epochs
can be used.

Returning to FIG. 2, the estimator ensemble 202 includes
estimators of different classes or types. These classes of
estimators are illustrated as singular value decomposition
(SVD) estimators 212, neighborhood and clustering estima-
tors 214, factorization estimators 216, gradient boosting
estimators 218, time-aware estimators 220, and variational
autoencoder (VAE) estimators 222. Each of these machine
learning system or estimators (which may also be referred to
as models) output an estimate of the digital experience
enhancement recommendation as an estimator output value
210. Various different estimators are discussed herein. In one
or more 1mplementations, the estimator ensemble 202
includes all of the estimators discussed herein. Additionally
or alternatively, additional estimators may be added to the
estimator ensemble 202, or in some situations one or more
estimators discussed herein 1s not included 1n the estimator
ensemble 202.

SVD estimators 212 refer to estimators that replace miss-
ing enfries from a matrix (e.g., the matrix M discussed
above) using singular value decomposition. These estima-
tors can operate on the matrix M itself, or alternatively on a
matrix of residuals obtained by subtracting the average of
the row and column mean from each entry in the matrix M.
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The SVD of the matrix M is M=UXV’, where r is the rank
of the matrix M, U 1s an mXxr matrix with orthonormal
columns, ¥ 1s an rXr diagonal matrix of positive entries, and
V 1s an rXn matrix with orthonormal columns.

The nuclear norm of the matrix M 1s given as

M, = > o),

where G, (M) denotes the kth singular value of M. A

soft-thresholded SVD algorithm generates the SVD by mini-
mizing:

112 P o(M-M)|| 24N M)«

where M denotes the estimate for M, |*|, denotes the
Frobenius matrix norm that takes the square root of the sum
of squares of the matrix entries. Additional information
regarding the soft-thresholded SVD algorithm can be found
in “Spectral regularization algorithms for learning large
incomplete matrices,” by R. Mazumder, T. Hastie, and R.
Tibshirani, Journal of Machine Learning Research, vol. 11,
pp. 2287-2322, 2010, which 1s hereby incorporated by
reference herein in its entirety.

In one or more implementations, the SVD estimators 212
include multiple estimators using the IRLLB algorithm and
the augmented implicitly restarted Lanczos bidiagonaliza-
tion algorithm. These multiple estimators include one esti-
mator using the IRLLB algorithm and the angmented 1implic-
1tly restarted lL.anczos bidiagonalization algorithm having a
matrix rank of 5, another estimator using the IRLLB algo-
rithm and the angmented implicitly restarted Lanczos bidi-
agonalization algorithm having a matrix rank of 7, and
another estimator using the IRLLB algorithm and the aug-
mented implicitly restarted Lanczos bidiagonalization algo-
rithm having a matrix rank of 13. Additional information
regarding the IRLLB algorithm and the anugmented implicitly
restarted LL.anczos bidiagonalization algorithm can be found
in “An 1iteration method for the solution of the eigenvalue
problem of linear differential and integral operators,” by C.
LLanczos, Journal of Research of the National Bureau of
Standards, vol. 45, no. 4, pp. 2535-282, 1930, and “Aug-
mented 1mplicitly restarted Lanczos bidiagonalization meth-
ods,” by J. Baglama and L. Reichel, SIAM Journal of
Scientific Computing, vol. 27, no. 1, pp. 19-42, 2003, both
of which are hereby incorporated by reference herein in their
entirety.

In one or more 1implementations, the SVD estimators 212
include multiple estimators using the Soft-Impute (also
referred to as softimpute) algorithm. These multiple estima-
tors include one estimator using the Soft-Impute algorithm
having a matrix rank of 5, another estimator using the
Soft-Impute algorithm having a matrix rank of 7, another
estimator using the Soft-Impute algorithm having a matrix
rank of 13, and another estimator using the Soft-Impute
algorithm having a matrix rank of 100. Additional informa-
tion regarding the Soft-Impute algorithm can be found 1n
“Spectral regularization algorithms for learning large incom-
plete matrices,” by R. Mazumder, T. Hastie, and R. Tibshi-
rani, Journal of Machine Learning Research, vol. 11, pp.
2287-2322, 2010.

In one or more 1implementations, the SVD estimators 212
include an estimator using a baseline algorithm. The base-
line algorithm fills 1n each empty entry in the matrix M with
a value that 1s the average of the row average for that entry
and the column average for that entry. For example, for an
empty entry M. ., the average of entries 1n the row M. 1s

1.J*
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calculated and the average of entries in the column M, 1s
calculated. The value ot the empty entry M, ; 1s then the
average ol the average of entries 1 the row M, and the
average of entries i the column M.

Neighborhood and clustering estimators 214 refer to
estimators that replace a missing entry from a matrx (e.g.,
the matrix M discussed above) based on the k nearest entry
values to the missing entry or on entry values 1n a same
cluster as the missing entry. The calculated values can be, for
example, an average of the k nearest entry values or an
average of the entry values in the cluster. These estimators
can operate on the matrix M 1tself, or alternatively on a
matrix of residuals obtained by subtracting the average of
the row and column mean from each entry in the matrix M.

In one or more implementations, the neighborhood and
clustering estimators 214 include an item k-nearest neigh-
bors (k-NN) estimator. The 1tem k-NN estimator considers
the r-dimensional rows of V from the soft-thresholded SVD
decomposition of the projection P o(M). These vectors give
a dense, low-dimensional (e.g., r=5) representation for each
item. A k-d tree 1s used to find the k=10 (or alternatively
k=1000) nearest neighbors for each item according to the
Euclidean metric. The Euclidean metric measures the dis-
tance between two items as the distance between the corre-
sponding sparse column vectors 1n the projection P o(M).
For a given (user, item)-pair, a determination 1s made
whether any of the item’s neighbors have a non-zero value
(c.g., are not empty), and 1 so a weighted average 1s
calculated over the values of the item’s neighbors. The
weilghts are proportional to the exponentiated negative dis-
tance between the item and its neighbors. Additional 1nfor-
mation regarding k-d trees can be found 1n “Multidimen-
sional binary search trees used for associative searching,” by
1. L. Bentley, Communications of the ACM, vol. 18, no. 9,
pp. 509-517, 1975, which i1s hereby incorporated by refer-
ence herein 1n 1ts entirety.

It should be noted that a smaller value for k restricts to
only the most similar neighbors, and so decreases the bias of
this estimate. However, 1t also increases the chance that very
tew (or none) of the neighbors will have a non-zero value.
In the case that too few nearest neighbors to an item have a
non-zero value (e.g., fewer than two of the k=10 nearest
neighbors to a movie has a rating), then this estimator does
not return a value. In such situations, the neural network 204
generates the digital experience enhancement recommenda-
tion 206 based on the estimator output values 210 from the
other estimators 1n the estimator ensemble 202. This allows
the 1tem k-NN estimator to abstain from generating an
estimator output value 210 when it 1s not sufliciently con-
fident, and falls back to estimators that will be more reliable
for a given (user, item)-patir.

In one or more implementations, the neighborhood and
clustering estimators 214 includes a user k-means estimator.
The user k-NN estimator considers the r-dimensional rows
of U from the soft-thresholded SVD decomposition of the
projection P ,(M). These vectors give a dense, low-dimen-
sional (e.g., r=5) representation for each user. K-means
clustering 1s used to partition the users 1nto k clusters (e.g.,
k=480), e.g., where each user belongs to the cluster with the
nearest mean. For k-means clustering, each user 1s repre-
sented as a multi-dimensional vector (e.g., a S-dimensional
vector) and k-means clustering 1s applied to these vectors.
These vectors are the left singular vectors from the singular
value decomposition of the training data, which capture
information about a user’s previously expressed preferences
from the training data. This process assigns each vector to
one of k clusters 1n a way that attempts to minimize the
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average intra-cluster variance (the average over clusters of
the average distance from each vector in a cluster to the
centroid of that cluster). In one or more 1implementations,
this assignment 1s made using Lloyd’s algorithm, which
alternates between assigning each vector to the cluster
having the nearest centroid and recalculating the centroids
based on the new assignments. For a given (user, 1tem)-patr,
a determination 1s made whether any other users 1n the user’s
cluster have provided a value for the item, and 1f so an

average 1s calculated over the values provided by the other
users 1n the cluster. The user k-NN estimator assumes that
users 1n the same cluster have similar tastes, so to predict a
user’s value for a given item, the user k-NN estimator
examines the values users in the same cluster provided for
that 1tem.

It should be noted that 1n the case that too few other users
in the cluster have provided a value for an item (e.g., fewer
than 20% of the other users in the cluster have provided a
value for the item), then this estimator does not return a
value. In such situations, the neural network 204 generates
the digital experience enhancement recommendation 206
based on the estimator output values 210 from the other
estimators 1n the estimator ensemble 202. This allows the
user k-means estimator to abstain from providing an esti-
mator output value 210 when 1t 1s not suiliciently confident,
and elegantly falls back to estimators that will be more
reliable for a given (user, 1tem)-pair.

In one or more implementations, the neighborhood and
clustering estimators 214 includes a neighboring average
estimator, which averages the values generated by the item
k-NN estimator and the user k-means estimator. For a given
(user, 1tem)-patir, the neighboring average estimator averages
the values generated by the item k-NN estimator and the user
k-means estimator for that (user, item)-pair. I one of the
item k-NN estimator and the user k-means estimator does
not return a value, the neighboring average estimator uses

the value by the one of the 1tem k-NN estimator and the user
k-means estimator that did return a value. If neither the
movie k-NN estimator nor the user k-means estimator
returns a value, then the neighboring average estimator does
not return a value. In such situations, the neural network 204
generates the digital experience enhancement recommenda-
tion 206 based on the estimator output values 210 from the
other estimators in the estimator ensemble 202.

In one or more implementations, the neighborhood and
clustering estimators 214 includes a cross k-NN of users and
items estimator. The cross k-NN estimator considers the
r-dimensional rows of V from the soit-thresholded SVD
decomposition of the projection P (M). These vectors give
a dense, low-dimensional (e.g., r=>5) representation for each
item. A k-d tree 1s used to find the k=100 nearest neighbors

for each 1tem according to the Fuclidean metric. The cross
k-NN estimator also considers the r-dimensional rows of U
from the soft-thresholded SVD decomposition of the pro-
jection P (M). These vectors give a dense, low-dimen-
sional (e.g., r=5) representation for each user. A k-d tree 1s
used to find the k=100 nearest neighbors for each item
according to the Euclidean metric.

The cross k-NN estimator finds neighbors for both rows
and columns of the projection P (M), and then aggregates
values along the sub-matrix consisting of the cross product
between neighboring users and neighboring items. In other
words, to generate a value for user 1 on item 7, the cross

k-NN estimator finds indices Nu; © [m] corresponding to
Ny

the neighbors of user 1, and indices ~*v; < [n] corresponding
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to the neighbors of item j, and computes a weighted average

over the available values 1n Nuixm;‘. The weights are
calculated using a normalized kernel function that 1s pro-
portional to

E(distaﬂ.ce Il HSEF space}z—(disrance It Itern Sprace )

The weights account for distances 1n user-space and 1tem-
space. In this manner, the k-NN estimator leverages values
for similar items provided by similar uvsers.

It should be noted that 1n the case that too few neighboring
users have provided values for too few neighboring items
(e.g., fewer than 20% of the neighboring items have non-
zero value), then this estimator does not return a value. In
such situations, the neural network 204 generates the digital
experience enhancement recommendation 206 based on the
estimator output values 210 from the other estimators in the
estimator ensemble 202. This allows the cross k-NN esti-
mator to abstain from providing an estimator output value
210 when 1t 1s not sufficiently confident, and elegantly falls
back to estimators that will be more reliable for a given
(user, 1tem)-pair.

In one or more implementations, the neighborhood and
clustering estimators 214 includes a time-aware cross k-NN
estimator. The time-aware cross k-NN estimator 1s analo-
gous to the cross k-NN estimator, except that the weighted

average computed over the available values 1n Ny, x

Ny j account for distances 1n user-space and 1tem-space, as
well as the difference 1n time between values. The weights
are calculated using a normalized kernel function that 1s
proportional to

—(distance in user space —{distance in item space —{(distance in

€

tirne ).

Factorization estimators 216 refer to estimators that
decompose the matrix M 1nto the product of two matrices of
lower dimensionality. More specifically, M=UV7” is esti-
mated where U 1s an nxXk matrix of user factors and V 1s an
mxk matrix of item factors.

In one or more 1implementations, the factorization esti-
mators 216 include a weighted alternating least squares
estimator. The weighted alternating least squares estimator
1s a welghted matrix factorization estimator that accounts for
the implicit preference a user gives to an item through the act
of using the item (e.g., if the 1tem 1s a movie, then watching
and rating the movie). The weighted alternating least squares
estimator i1s 1nitialized from the SVD decomposition by
taking, for example, U\/f, YV from one of the SVD esti-
mators 212 rather than random values. The weighted alter-
nating least squares estimator seeks:

arg min

U, V=
" U, v

P (NW o (UrT —m))|* +201U1? +171%)

where W denotes the number of items a user has provided
values for and | denotes element-wise multiplication. Addi-
tional information regarding the weighted alternating least
squares estimator can be found 1n “Collaborative filtering for
implicit feedback datasets,” by Y. Hu, Y. Koren, and C.
Volinsky, 1n IEEE International Conference on Data Min-
ing, 2008, pp. 263-272, which 1s hereby incorporated by
reference herein in its entirety.

In one or more 1implementations, the factorization esti-
mators 216 include a neural network matrix factorization
estimator. The neural network matrix factorization estimator
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1s a feedforward fully-connected neural network mapping
with learned representation vectors for users and items
through the network to predict the corresponding value for
an 1tem. Learned estimator parameters for the neural net-
work matrix factorization estimator include m user vectors
in R”, nitem vectors in R”, and all parameters for the neural
network. User vectors are 1nitialized with the U matrix and
the 1tem vectors are initialized with the V matrix from the
soft-thresholded SVD estimator. The neural network param-
eters optionally receive Glorot uniform initialization.

During training of the neural network matrix factorization
estimator, for each batch three training steps are performed:
neural network parameters are updated, user representations
are updated, and i1tem representations are updated. Tikhonov
L.2-regularization 1s applied to U and V. For all parameter
updates, the Adam optimizer 1s used. The mean squared
error (MSE) 1s used as the objective function to minimize
during training. The neural network uses leaky rectified
linear unit activation, and applies dropout after the first
hidden layer to prevent overfitting.

There separate optimizations are performed for training
the neural network matrix factorization estimator. The neu-
ral network matrix factorization estimator uses a model:

value(user;, item;) = neural network (neural network parameters,

user representation|i, :|, item representation [/, :])

where neural network parameters, user representation,
and 1tem representation are all parameters that the neural
network matrix factorization estimator learns. This model 1s
over-specified, meaning that the complete set of parameters
1s higher-dimensional than it strictly needs to be, so we use
regularization. The training for neural network parameters
minimizes MSE on the training batch for 1its loss. The
training for user representation and item representation both
minimize MSE plus 0.1 times the 1.2 norm of the parameters
themselves as a form of regularization. The neural network
matrix factorization estimator fuses the training of these
three parameters: 1t calculates and collects all the derivatives
it will need from a given training batch during a single
evaluation and performs all training updates concurrently.

Different neural network matrix factorization estimators
can be initialized 1n different manners. For example, one
neural network matrix factorization estimator 1s 1nitialized
with the U matrix and the V matrix from an SVD estimator
212 using the Soft-Impute algorithm having a matrix rank of
13, and 1s trained with a single epoch (each training data
point 1s presented to the network once). Another neural
network matrix factorization estimator 1s 1nitialized with the
U matrix and the V matrix from an SVD estimator 212 using
the Soft-Impute algorithm having a matrix rank of 13, and
1s trained with 10 training epochs (each training data point
1s presented to the network 10 separate times). Another
neural network matrix factorization estimator 1s initialized
with the U matrix and the V matrix from an SVD estimator
212 using the IRLB algorithm and the augmented implicitly
restarted lanczos bidiagonalization algorithm having a
matrix rank of 13.

Additional information regarding neural network matrix
factorization can be found in “Neural network matrix fac-
torization”, by G. K. Dziugaite and D. M. Roy, 2015. eprint:
arX1v:1511.06443, and “Neural collaborative filtering,” by
X. He, L. Liao, H. Zhang, L.. Nie, X. Hu, and T.-S. Chua, 1n
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International World Wide Web Conference, 2017, pp. 173-
182, both of which are hereby incorporated by reference 1n
their entirety.

In one or more 1mplementations, the factorization esti-
mators 216 include a Gaussian matrix factorization estima-
tor. The Gaussian matrix factorization estimator 1s a proba-
bilistic matrix factorization estimator where a generative
graphical estimator 1s specified and the maximum a poste-
rior1 parameters are found or Gibbs sampling 1n a Bayesian
setting 1s performed. The Gaussian matrix factorization
models

M.~

I

id N,V +b, ,6%)

where (similar to the discussions above) U 1s an nxk matrix
of user factors and V 1s an mxk matrix of item factors, b;
denotes the average of the mean rating from user 1 and the
mean value of 1tem j, and account for user- and i1tem-effects,
and 6°=1. In the Gaussian matrix factorization estimator, U
and V are learned to maximize the log likelihood of the
observed data.

Additional information regarding the (Gaussian matrix
factorization estimator can be found 1n “Probabilistic matrix
factorization,” by R. R. Salakhutdinov and A. Mnih, 1n
Advances in Neural Information Processing Systems, 2008,
pp. 1257-1264, and “Bayesian probabilistic matrix factor-
1zation using markov chain monte carlo,” by R. Salakhut-
dinov and A. Mnih, in International Conference on Machine
Learning, 2008, pp. 880-887, both of which are hereby
incorporated by reference herein 1n their entirety.

In one or more 1implementations, the factorization esti-
mators 216 include a Poisson matrix factorization estimator.
The Poisson matrix factorization estimator 1s a probabilistic
matrix factorization estimator that assumes each entry in the
matrix M 1s drawn from a Poisson distribution—an expo-
nential family distribution over non-negative integers—
whose parameter 1s a linear combination of the correspond-
ing user preferences and item attributes.

In the Poisson matrix factorization estimator, the follow-
Ing estimator 1s learned:

M. ~

L.J

“IPoisson(U,V,"+b,)

where M, = [X IX <11, . . ., s}| 1s predicted and
X. ~P01sson(U V 7l+b ;) and U, V denote the learned estima-
tor parameters. The Pmsson matrix factorization estimator 1s
trained to minimize the batch negative log likelihood of the
data under the probabilistic model. In this way, the Poisson
matrix factorization estimator seeks parameters that condi-
tionally make the observed data most likely. Additional
information regarding the Poisson factorization estimator
can be found 1n “Scalable recommendation with hierarchical
poisson factorization,” by P. Gopalan, J. M. Hofman, and D.
M. Blei, in Conference on Uncertainty in Artificial Intelli-
gence, 2015, pp. 326-335, which 1s hereby incorporated by
reference herein in its entirety.

In one or more 1mplementations, the factorization esti-
mators 216 include a factorization machine estimator. The
factorization machine estimator estimates all nested variable
interactions (comparable to a polynomial kernel 1n a Support
Vector Machine (SVM)), but uses a factorized parametriza-
fion 1nstead of a dense parametrization like in SVMs.

A fTactorization machine estimator of second degree learns
a regression estimator of:

A /
Px) =wo + E g Vi T Zlﬂf{jﬂf(‘l’f: VXX

10

15

20

25

30

35

40

45

50

35

60

65

18

for parameters w, € R, k=1, , 1, and v, & Rik=1,....L
Factorization machine estimators are designed for sparsity.
In a factorization machine estimator 216, xe R™™ denotes
a one-hot vector representation for the user concatenated
with a one-hot vector representation for the item. The
factorization machine estimator 1s trained to minimize the
MSE loss with 1.2 regularization.

Additional 1nformation regarding the {factorization
machine estimator can be found i1n “Factorization
machines,” by S. Rendle, in /EEE International Conference
on Data Mining, 2010, pp. 995-1000, and “Factorization
machines with libim,” by S. Rendle, ACM Transactions on
Intelligent Systems and Technology, vol. 3, no. 3, 2012, both
of which are hereby incorporated by reference herein 1n their
entirety.

Gradient boosting estimators 218 refer to estimators that
iteratively add weak learners to an ensemble of machine
learning systems. The gradient boosting estimator 1s itself an
ensemble of multiple machine learning systems and weak
learners (machine learning systems) are iteratively added to
improve the gradient boosting estimator.

In an example gradient boosting estimator, values for a
(user, 1item) pair as a function of their representations in
thresholded SVD feature space are learned. A loss function
L(*,*) and a training method, such as regression trees, are
used to train new weak learners h.. This loss function 1s
mean square error plus a regularization term to penalize the
model complexity. The ensemble 1s 1nitialized at a constant
value a, minimizing loss on the training set {(X.y.) }._;

Fo=ao = "EMNST Ly, a0}

At step t=1 of the estimator, we take the current ensemble,

i—1
Fra=ao+ ) ajh;),

a linear combination of weak learners, and compute the
pseudo-residuals

0L(y;, )
a5y,

i = bi=r, g )

A new weak learner h, 1s trained on the set of pseudo-
residuals {(X;.1,;)};,—, and the multiplier

i=1

arg min
ﬂ]; — {

> L Fea() + ah )

1s found. The new ensemble 1s then

FAx)=F (x)+tah{x).

Additional 1information regarding gradient boosting can
be found 1n “Xgboost: A scalable tree boosting system,” by
T. Chen and C. Guestrin, in International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 785-794,
which 1s hereby incorporated by reference herein in 1its
enfirety.

Time-aware estimators 220 refer to estimators that lever-
age time when generating estimator output values. Various
times can be leveraged, such as the time that a value was
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provided by a user, a timespan between an item’s availability
(e.g., a movie’s release) and a user providing a value for the
item, and so forth.

In one or more 1implementations, the time-aware estima-
tors 220 include a time-aware neural factorization estimator.
The time-aware neural factorization estimator 1s a version of
the neural network matrix factorization estimator discussed
above that includes time components as 1nputs to the neural
network. In one or more implementations these time com-
ponents 1include a time (e.g., time of day and/or date) that a
value was provided by a user (e.g., a time the user provided
a movie rating), optionally normalized to lie in [0,1]. Addi-
tionally or alternatively, these time components include an
indication of a timespan (e.g., a number of days or years)
between an item’s availability and a user providing a value
for the 1tem (e.g., a timespan between a movie’s release and
the user providing a rating for the movie). The time com-
ponents are provided as an additional input to the network.
However, as opposed to the item vector (that 1s treated as a
parameter and optimized), time 1s treated as known and
€X0Zgenous.

Updates to the U matrix and the V matrix can be sparse
(e.g., any given row only updates a handful of times for each
run through the data set). Accordingly, a Nesterov Momen-
tum optimizer 1s used to train the U matrix and the V matrix,
while continuing to apply the Adam optimizer for updating
the neural network parameters (all of which are updated at
each training step). The Adam optimizer tweaks the learning
rate for each parameter depending on a window of previous
gradients for each parameter. This approach may not be best
when updates to a given parameter occur only sporadically,
so the Nesterov Momentum optimizer 1s used to train the U
matrix and the V matrix. The objective function remains
MSE to mimimize during training.

In one or more implementations, the time-aware estima-
tors 220 include a neural one-hot factorization with time
component estimator.

In the neural one-hot factorization with time component
estimator, a neural network receives as inputs takes user- and
item representations, as well as one or more time features. In
one or more 1mplementations these time features include
year that the item was first available (e.g., release year for a
movie). Additionally or alternatively, these time features
include a time (e.g., time of day and/or date) that a value was
provided by a user (e.g., a time the user provided a movie
rating). Additionally or alternatively, these time features
include a time (e.g., time of day and/or date) that the user
provided his or her first value (e.g., a time the user provided
his or her first movie rating). The neural network outputs a
probability distribution on the range of possible item values,
{1, ..., s}

Training of the neural one-hot factorization with time
component estimator minimizes the cross-entropy loss
between a one-hot vector representing the ground truth and
the estimator’s predicted distribution. In addition to provid-
ing estimates for (user, movie, time)-values, the neural
one-hot factorization with time component estimator allows
prediction of the variance or uncertainty of the generated
estimate. Using a probability distribution provides more
information about the uncertainty of an estimate than a point
estimate provides. For example, the variance of the estimate
can be determined, a chance that a user would provide one
of two different values (e.g., a movie rating of 4 or 35), and
so forth. Thresholding 1s then optionally used to exclude
highly uncertain estimates (e.g., estimates with an uncer-
tainty greater than a threshold amount, such as 70%) from
the estimator output values 210.
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A probability distribution can be used by the digital
experience generation system 104 in various manners, such
as to safeguard against “risky” behavior. For example,
consider movie A that the probability distribution indicates
has a 0.5 chance of being rated 1 and a 0.5 chance of being
rated 5, and movie B that the probability distribution indi-
cates will almost certainly be rated 3. A point estimate for the
mean of the distribution would see no difference between
movies A and B, but a distributional estimate would include
information that there’s a 50% chance the user will greatly
dislike movie A.

In one or more implementations, the time-aware estima-
tors 220 include a time-binned SVD estimator. The time-
binned SVD estimator partitions the training data into
approximately equally sized bins or groups based on the
time stamps associated with them, so values provided at
around the same time will be placed in the same or a
neighboring bin. A separate SVD estimator i1s trained for
each bin. Any of a variety of different SVD estimators can
be used with the time-binned SVD estimator, such as any of
the SVD estimators 212 discussed above.

Each of these trained SVD estimators can then be used to
predict a value for a given (user, movie, time) tuple, and a
weighted average formed over all such predicted values. The
given (user, movie, time) tuple 1s placed into one of the bins,
and a higher weight 1s given to the predicted value from the
SVD trained for the bin into which the tuple was placed.
Predicted values from all other bins can be given the same
lower weight. Additionally or alternatively, the weight given
to a predicted value from a particular bin can be based on
how close a time associated with the particular bin (e.g., an
average or mean time for data in the particular bin) 1s to a
time associated with the bin into which the tuple was placed
(e.g., an average or mean time for data in the bin) or the time
1n the tuple. For example, lower weights can be given to bins
having an associated time that i1s further from the time
associated with the bin into which the tuple was placed (or
the time 1n the tuple).

In one or more 1implementations, the time-aware estima-
tors 220 i1nclude a tensor factorization estimator. In the
tensor factorization estimator, data 1s partitioned into bins
analogous to the time-binned SVD estimator. After parti-
fioning the data into time bins, the tensor factorization
estimator views the data as a value tensor, where the users
by 1items matrix now extends along a third, temporal dimen-
sion. This allows the tensor factorization estimator to per-
form time-aware factorization into three tensors, one for
each dimension.

A generalization of SVD to tensors, known as the minimal
canonical polyadic (CP) decomposition, yields the estima-
tor:

M = ZPLI-Q} R ar R a;
i=1

The tensor factorization estimator 1s 1nitialized with higher-
order SVD and trained using alternating least squares to
minimize the mean square error of the decomposition, using
a matrix rank of 4.

VAE estimators 222 refer to estimators that learn param-
eters for an autoencoder using variational inference. In one
or more implementations, the VAE estimators 222 include a
VAE estimator. An autoencoder estimators the identity func-
tion with a neural network. The architecture of an autoen-
coder 1includes a hidden layer of relatively small dimension-
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ality that serves as an information bottleneck. Upon training,
the output from this layer yields a lower-dimensional rep-
resentation of the original data. For example:

v Lz5 %

where X, X € R9 and Ze R™ for m«d. The neural networks
f: R“>R™ and g: R™—>R“ are trained so that gof approxi-
mates the i1dentity on n-dimensional data. An objective
function minimizes the loss between X and X. This implies
that f(x)e R™ contains the most relevant information
required to reconstruct X.

If f, g are linear maps and the L., loss 1s imposed on the
reconstruction, autoencoding solves for the principal com-
ponents from PCA. In this way, autoencoding can be con-
sidered as a nonlinear extension of PCA.

In Bayesian statistics, variational inference approximates
intractable integrals (expectations) with optimization, by
substituting the integrand (probability distribution) for the
closest member of a parametrized family of distributions.
(Given a conditional distribution p(zlx), the following can be
calculated:

S [f(o)lx]=[f2)p(elx)dx

where the integral on the right hand side cannot be solved
analytically. A variational distribution q, (zIX) 1s 1ntroduced
to approximate p(zlx), for which

[A2)qo(zlx)dx

becomes a tractable approximation to the integral of interest.
Parameters 0 are found to minimize

D, (go(zlx)|| p(zlx))

where D,,(**) denotes the Kullback-Leibler divergence,
with the aim to make g, as close to p as possible. This

corresponds to maximizing the Evidence Lower Bound (also
referred to as ELBO),

L®)=F . ,,llog p(zx)-log go(zl0)].

Approximating the gradients for optimization from
batches of samples, allowing online parameter updates to be
made while holding only a fraction of data in memory, this
process 1s referred to as stochastic variational inference.

A variational autoencoder learns a probabilistic autoen-
coding estimator as two conditional distributions described
by neural networks. The encoding distribution gg(zIx)
describes how to sample the latent low-dimensional repre-
sentation from an observation X and the decoding distribu-
tion p,,, (x1z) describes how to sample a reconstructed x from
the latent representation. Optimization aims to maximize:

L8, ¢) = Eggmllog pu(x, 2)] — Eggim [log oz | X)]

= [Eq9(3|x) [lﬂg ﬁ:p(xp Z)] - [Eqﬁ(z|x) [ng ‘?H(Z | I)] +

E 00 log p(z)]

= Egp(on [l0g pylx, 2)] = Dirlgelz | X)l[p(2))

For computational expediency, the expectations above
can be approximated via single-sample Monte Carlo inte-
gration. In particular, for the 1th X,

Z~qo(|X=x,)

1s sampled and the following unbiased approximations are
formed:
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v qﬂ(zlx}[lﬂg p(p(x,z)]*"-‘-‘lﬂg p(p(Xf;Zf)

=]

! :;'B(zlx}[lﬂg QB(ZH)]"‘""IGE Q‘B(ZJX:)

The VAE estimator takes X.€ R” to be user i’s ratings for
each 1tem (or the residual ratings after subtracting off half of

user 1’s and item j’s mean values), where b refers to the
number of items included in the matrix M. The VAE

estimator estimates:

golzlx)=N (2 f1(x).exp(fs(x)] o))

where 1, denotes a 10-dimensional Normal distribution, I,
1s the 10x10 1denfity matrix, and f,, {, are leaky rectified
linear unit activated neural networks with a single hidden
layer. Here, O corresponds to the parameters for the neural
networks 1, ,.

The VAE estimator estimates:

Pz X)=N, (2,801 )

where m, denotes the number of items user 1 rated, g 1s a
leaky rectified linear unit activated neural network with a
single hidden layer, and @ denotes the parameters for g. The
VAE estimator 1s trained to maximize the Evidence Lower
Bound (ELLBO) discussed above, which provides a tractable
lower bound to the log likelithood. To maximize the log
likelihood the VAE estimator minimizes the negative evi-
dence lower bound as a loss function.

Additional information regarding variational autoencod-
ers can be found 1n “Variational autoencoders for collabora-
tive filtering,” by D. Liang, R. GG. Krishnan, M. D. Hoffman,
and T. Jebara, 1n International World Wide Web Conference,
2018, pp. 689-698, and “Item recommendation with varia-
tional autoencoders and heterogeneous priors,” by G. Kara-
manolakis, K. R. Cherian, A. R. Narayan, J. Yuan, D. Tang,
and T. Jebara, in Workshop on Deep Learning for Recom-
mender Systems, 2018, both of which are hereby incorpo-
rated by reference herein 1n their entirety.

In one or more 1implementations, the neural network 204
1s 1mplemented as a 3-layer neural network. FIG. 4 1llus-
trates an example 400 of a neural network 402. The neural
network 402 can be, for example, the neural network 204 of
FIG. 2 or FIG. 3. The neural network 402 includes an input
layer 404, a hidden layer 406, and an output layer 408. The
estimator output values 210 are fed into the input layer 404,
the hidden layer 406 implements leaky rectified linear
activation, and the output layer 408 outputs vectors of
predicted logits L. The example 400 further includes a
mapping and normalization layer 410, which maps the logits
L to a mapped value using the function

1
l+e

—F -

These mapped values are normalized to produce probabili-
ties for one of multiple (e.g., 5) potential item values.

The digital experience enhancement recommendation 206
output by the mapping and normalization layer 410 1s a set
of probability distributions on the multiple potential rating
values. For example, 1f there are 5 potential rating values for
a movie, the digital experience enhancement recommenda-
tion 206 can be a vector [0.01 0.04 0.10 0.75 0.10] to
indicate that there 1s a 1% chance of the rating being the first
rating value, a 4% chance of the rating being the second
rating value, a 10% chance of the rating being the third
rating value, a 75% chance of the rating being the fourth
rating value, and a 10% chance of the rating being the fifth
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rating value. This can be viewed as a recommendation of a
rating value of the fourth rating value.

The neural network 402 1n the example 400 1s trained to
mimmize the cross-entropy loss between the ground truth
and the digital experience enhancement recommendation
206 output by the mapping and normalization layer 410. The
ground truth can be represented as, for example, a one-hot
vector. During training, weights of the neural network 402
can be updated using various techniques. In one or more
implementations, weights ol the neural network 402 are
updated using stochastic gradient descent with Nesterov
momentum.

FI1G. 5 illustrates another example 500 of a neural network
502. The neural network 502 can be, for example, the neural

network 204 of FIG. 2 or FIG. 3. The neural network 502

includes an input layer 504, a hidden layer 506, and an
output layer 508. The estimator output values 210 are fed
into the mput layer 504, the hidden layer 506 implements
rectified linear activation, and the output layer 508 outputs
single valued outputs. For a particular set of estimator output
values 210 (e.g., generated from a sample of traiming data or
an enhancement request 208), the neural network 502 gen-
erates a single value output as the digital experience
enhancement recommendation 206. For example, 11 the
potential rating values for a movie are “17, “27, 37, “4”, or
“5”, then the single value output as the digital experience
enhancement recommendation 206 can be “4”.

The neural network 502 in the example 500 1s trained to
mimmize the root mean square error between the ground
truth and the digital experience enhancement recommenda-
tion 206 output by the output layer 508. The ground truth can
be represented as, for example, a single value (the ground
truth value). During training, weights of the neural network
204 can be updated using various techniques. In one or more
implementations, weights ol the neural network 204 are
updated using the Adam optimization algorithm.

Thus, as can be seen from the discussion herein, there are
numerous different classes of estimators that can be used in
the estimator ensemble 202, different types of estimators
within a class of estimators, diflerent configuration settings
for the different estimators, and different loss functions for
the different estimators. In light of all these different options,
rather than being a small or easily traversed number of
different combinations of estimators, configuration settings,
and loss functions that can be used 1n the estimator ensemble
202, there are a large number of different combinations of
estimators, configuration settings, and loss functions that can
be used 1n the estimator ensemble 202. At least one tech-
nique the mventors have discovered is that including at least
one estimator from each of the singular value decomposition
(SVD) estimators 212, the neighborhood and clustering
estimators 214, the factorization estimators 216, the gradient
boosting estimators 218, the time-aware estimators 220, and
the variational autoencoder (VAE) estimators 222, combined
with training the neural network 204 to minimize root mean
square error or cross-entropy loss as discussed above, pro-
vides a recommendation performance that exceeds the per-
formance provided by conventional techniques.

Example Procedures

The following discussion describes techniques that may
be implemented utilizing the previously described systems
and devices. Aspects of the procedure may be implemented
in hardware, firmware, software, or a combination thereof
The procedure 1s shown as a set of blocks that specily
operations performed by one or more devices and are not
necessarily limited to the orders shown for performing the
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operations by the respective blocks. In portions of the
following discussion, reference will be made to FIGS. 1-5.

FIG. 6 1s a flow diagram depicting a procedure 1 an
example implementation of digital experience enhancement
using an ensemble deep learning model. In this example, a
request for a recommendation to enhance the digital expe-
rience for a user 1s received (block 602). The request
includes an indication of past user interactions of the user
with the digital experience. These past user interactions can
take various forms, such as ratings provided by the user for
content.

Multiple estimation values are generated using an esti-
mator ensemble and based on the indication of past user
interactions (block 604). At least one of the multiple esti-
mation values 1s generated by each of multiple estimators
included 1n an estimator ensemble. The estimator ensemble
includes a singular value decomposition estimator, a neigh-
borhood or clustering estimator, a factorization estimator, a
time-aware estimator, a variational autoencoder estimator,
and a gradient boosting estimator.

The recommendation to enhance the digital experience for
the user 1s generated using a neural network and based on the
multiple estimation values (block 606). The recommenda-
tion can be, for example, a set of probability distributions on
multiple potential values or a single value output.

The digital experience 1s enhanced based on the recom-
mendation (block 608), and the enhanced digital experience
1s displayed (block 610). The enhancement of the digital
experience can take various forms as discussed above, such
as providing a value for an 1tem (e.g., a rating for a movie),
a font or color to use for a Web page, and so forth.

FIG. 7 1s a flow diagram depicting a procedure 1 an
example implementation of digital experience enhancement
using an ensemble deep learning model. In this example, a
first traiming data set i1s obtaimned (block 702). The first
training data set includes, for each of multiple users, values
associated with the user for particular items.

Each of multiple estimators 1n an estimator ensemble are
trained using the first traimning data set (block 704). The
multiple estimators 1include a singular value decomposition
estimator, a neighborhood or clustering estimator, a factor-
1zation estimator, a time-aware estimator, a variational auto-
encoder estimator, and a gradient boosting estimator.

A second training data set 1s also obtained (block 706).
The second training data set includes, for each of the
multiple users, values associated with the user for particular
items.

Multiple estimation values are generated using the esti-
mator ensemble and based on the second training data set
(block 708). An estimation value 1s generated by each of the
estimators 1n the estimator ensemble.

A neural network 1s trained using the multiple estimation
values generated by the estimator ensemble (block 710). The
neural network 1s trained to generate a recommendation to
enhance the digital experience for the user.

The digital experience for the user 1s enhanced using the
recommendation from the neural network (block 712). The
enhancement of the digital experience can take various
forms as discussed above, such as providing a value for an
item (e.g., a rating for a movie), a font or color to use for a
Web page, and so forth.

Example System and Device

FIG. 8 1llustrates an example system generally at 800 that
includes an example computing device 802 that 1s represen-
tative of one or more computing systems and/or devices that
may implement the various techniques described herein.
This 1s 1llustrated through inclusion of the digital experience




US 11,816,562 B2

25

enhancement system 122. The computing device 802 may
be, for example, a server of a service provider, a device
associated with a client (e.g., a client device), an on-chip
system, and/or any other suitable computing device or
computing system.

The example computing device 802 as 1llustrated includes
a processing system 804, one or more computer-readable
media 806, and one or more I/O interface 808 that are
communicatively coupled, one to another. Although not
shown, the computing device 802 may further include a
system bus or other data and command transier system that
couples the various components, one to another. A system
bus can include any one or combination of different bus
structures, such as a memory bus or memory controller, a
peripheral bus, a universal serial bus, and/or a processor or
local bus that utilizes any of a variety of bus architectures.
A variety of other examples are also contemplated, such as
control and data lines.

The processing system 804 1s representative of function-
ality to perform one or more operations using hardware.
Accordingly, the processing system 804 1s illustrated as
including hardware element 810 that may be configured as
processors, functional blocks, and so forth. This may include
implementation in hardware as an application specific inte-
grated circuit or other logic device formed using one or more
semiconductors. The hardware elements 810 are not limited
by the materials from which they are formed or the process-
ing mechanisms employed therein. For example, processors
may be comprised of semiconductor(s) and/or transistors
(e.g., electronic integrated circuits (ICs)). In such a context,
processor-executable instructions may be electronically-ex-
ecutable instructions.

The computer-readable storage media 806 1s 1llustrated as
including memory/storage 812. The memory/storage 812
represents memory/storage capacity associated with one or
more computer-readable media. The memory/storage com-
ponent 812 may include volatile media (such as random
access memory (RAM)) and/or nonvolatile media (such as
read only memory (ROM), Flash memory, optical disks,
magnetic disks, and so forth). The memory/storage compo-
nent 812 may include fixed media (e.g., RAM, ROM, a fixed
hard drive, and so on) as well as removable media (e.g.,
Flash memory, a removable hard drive, an optical disc, and
so forth). The computer-readable media 806 may be con-
figured 1n a variety of other ways as further described below.

Input/output interface(s) 808 are representative ol func-
tionality to allow a user to enter commands and information
to computing device 802, and also allow information to be
presented to the user and/or other components or devices
using various input/output devices. Examples of input
devices include a keyboard, a cursor control device (e.g., a
mouse), a microphone, a scanner, touch functionality (e.g.,
capacitive or other sensors that are configured to detect
physical touch), a camera (e.g., which may employ visible or
non-visible wavelengths such as infrared frequencies to
recognize movement as gestures that do not involve touch),
and so forth. Examples of output devices include a display
device (e.g., a monitor or projector), speakers, a printer, a
network card, tactile-response device, and so forth. Thus, the
computing device 802 may be configured 1n a variety of
ways as further described below to support user interaction.

Various techniques may be described herein in the general
context of soltware, hardware elements, or program mod-
ules. Generally, such modules 1nclude routines, programs,
objects, elements, components, data structures, and so forth
that perform particular tasks or implement particular abstract
data types. The terms “module,” “functionality,” and “com-
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ponent” as used herein generally represent software, firm-
ware, hardware, or a combination thereof. The features of
the techniques described herein are platform-independent,
meaning that the techniques may be implemented on a
variety of commercial computing platforms having a variety
ol processors.

An mmplementation of the described modules and tech-
niques may be stored on or transmitted across some form of
computer-readable media. The computer-readable media
may include a variety of media that may be accessed by the
computing device 802. By way of example, and not limita-
tion, computer-readable media may include “computer-read-
able storage media” and “computer-readable signal media.”

“Computer-readable storage media™ refers to media and/
or devices that enable persistent and/or non-transitory stor-
age ol miormation 1n contrast to mere signal transmission,
carrier waves, or signals per se. Computer-readable storage
media 1s non-signal bearing media. The computer-readable
storage media includes hardware such as volatile and non-
volatile, removable and non-removable media and/or stor-
age devices implemented 1n a method or technology suitable
for storage of information such as computer readable
instructions, data structures, program modules, logic ele-
ments/circuits, or other data. Examples of computer-read-

able storage media may include, but are not limited to,
RAM, ROM, EEPROM, flash memory or other memory

technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, hard disks, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage
devices, or other storage device, tangible media, or article of
manufacture suitable to store the desired imformation and
which may be accessed by a computer.

“Computer-readable signal media” refers to a signal-
bearing medium that 1s configured to transmuit istructions to
the hardware of the computing device 802, such as via a
network. Signal media typically may embody computer
readable 1nstructions, data structures, program modules, or
other data 1n a modulated data signal, such as carrier waves,
data signals, or other transport mechanism. Signal media
also include any information delivery media. The term
“modulated data signal” means a signal that has one or more
of 1ts characteristics set or changed 1n such a manner as to
encode mformation 1n the signal. By way of example, and
not limitation, communication media include wired media
such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared, and other
wireless media.

As previously described, hardware elements 810 and
computer-readable media 806 are representative of modules,
programmable device logic and/or fixed device logic imple-
mented 1n a hardware form that may be employed 1n some
implementations to implement at least some aspects of the
techniques described herein, such as to perform one or more
instructions. Hardware may include components of an inte-
grated circuit or on-chip system, an application-specific
integrated circuit (ASIC), a field-programmable gate array
(FPGA), a complex programmable logic device (CPLD),
and other implementations 1n silicon or other hardware. In
this context, hardware may operate as a processing device
that performs program tasks defined by instructions and/or
logic embodied by the hardware as well as a hardware
utilized to store instructions for execution, e.g., the com-
puter-readable storage media described previously.

Combinations of the foregoing may also be employed to
implement various techniques described herein. Accord-
ingly, software, hardware, or executable modules may be
implemented as one or more 1nstructions and/or logic
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embodied on some form of computer-readable storage
media and/or by one or more hardware elements 810. The
computing device 802 may be configured to implement
particular instructions and/or functions corresponding to the
soltware and/or hardware modules. Accordingly, implemen-
tation of a module that i1s executable by the computing
device 802 as software may be achieved at least partially 1n
hardware, e.g., through use of computer-readable storage
media and/or hardware elements 810 of the processing
system 804. The instructions and/or functions may be
executable/operable by one or more articles of manufacture
(for example, one or more computing devices 802 and/or
processing systems 804) to implement techniques, modules,
and examples described herein.

The techniques described herein may be supported by
various configurations of the computing device 802 and are
not limited to the specific examples of the techniques
described herein. This functionality may also be imple-
mented all or 1n part through use of a distributed system,
such as over a “cloud” 814 via a platform 816 as described
below.

The cloud 814 includes and/or 1s representative of a
platform 816 for resources 818. The platform 816 abstracts
underlying functionality of hardware (e.g., servers) and
software resources of the cloud 814. The resources 818 may
include applications and/or data that can be utilized while
computer processing 1s executed on servers that are remote
from the computing device 802. Resources 818 can also
include services provided over the Internet and/or through a
subscriber network, such as a cellular or Wi-F1 network.

The platform 816 may abstract resources and functions to
connect the computing device 802 with other computing
devices. The platform 816 may also serve to abstract scaling
of resources to provide a corresponding level of scale to
encountered demand for the resources 818 that are imple-
mented via the platform 816. Accordingly, in an 1ntercon-
nected device embodiment, implementation of functionality
described herein may be distributed throughout the system
800. For example, the functionality may be implemented 1n
part on the computing device 802 as well as via the platform
816 that abstracts the functionality of the cloud 814.

CONCLUSION

Although the invention has been described in language
specific to structural features and/or methodological acts, 1t
1s to be understood that the invention defined 1n the
appended claims 1s not necessarily limited to the specific
teatures or acts described. Rather, the specific features and
acts are disclosed as example forms of implementing the
claimed vention.

What 1s claimed 1s:

1. A method comprising:

generating, by a processing device, a trained estimator
ensemble to generate multiple estimation values by
training, using a first training data set including ground
truths that are specific to a digital experience use
scenario based on past user interactions with a digital
experience displayed in a user interface, an estimator
combination of a singular value decomposition estima-
tor, a neighborhood or clustering estimator, a factor-
1zation estimator, a time-aware estimator that includes
a time-aware neural factorization estimator leveraging
a time that a value 1s provided by the user, a variational
autoencoder estimator, and a gradient boosting estima-
tor included 1n an estimator ensemble to generate an
estimation value;
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training, by the processing device using a second training
data set and the multiple estimation values generated by
the trained estimator ensemble, a neural network to
generate recommendations to enhance the digital expe-
rience for the user, the neural network including nodes
with weights that are tuned to minimize root mean
square errors between the ground truths and the rec-
ommendations to enhance the digital experience for the
user;

updating, by the processing device, the weights using

stochastic gradient descent with Nesterov momentum
and applying an Adam optimizer;
recerving, by the processing device, a request for a
recommendation to enhance the digital experience for
the user, the request including an 1ndication of past user
interactions of the user with the digital experience;

generating, by the processing device using the trained
estimator ensemble and based on the indication of past
user interactions, the multiple estimation values;

generating, by the processing device using the neural
network and based on the multiple estimation values,
the recommendation to enhance the digital experience
for the user:;

enhancing, by the processing device, the digital experi-

ence based on the recommendation to generate an
enhanced digital experience; and

displaying, by the processing device, the enhanced digital

experience.

2. The method of claim 1, the recommendation being one
of multiple potential values, the neural network comprising
a 3-layer neural network followed by a mapping and nor-
malization layer, the mapping and normalization layer out-
putting the recommendation as a set of probability distribu-
tions on the multiple values.

3. The method of claim 2, the training the neural network
including minimizing cross-entropy loss between the rec-
ommendations and one-hot representations of ground truths
using a loss function and a regression tree.

4. The method of claim 1, the recommendation being one
of multiple potential values, the neural network comprising
a 3-layer neural network outputting the recommendation as
a single value output.

5. The method of claim 1, the past user interactions
including values provided by the user for diflerent items
included in the digital experience.

6. The method of claim 3, the past user interactions further
including a time feature that indicates, for a particular item,
a time that the particular 1item was first available to the user.

7. The method of claim 5, the past user interactions further
including a time feature that indicates, for a particular item,
a time that the user provided the value for the particular item.

8. The method of claim 5, the past user interactions further
including a time feature that indicates a time that the user
first provided a value for any of the different items.

9. The method of claim 3, the past user interactions turther
including a time feature that indicates, for a particular 1item,
a timespan between a time that the particular 1item was first
available to the user and a time that the user provided the
value for the particular item.

10. The method of claim 1, wherein the neighborhood or
clustering estimator comprises an 1tem k-nearest neighbors
estimator that generates an estimator output value if a
threshold confidence level 1s achieved.

11. The method of claim 10, wherein the neighborhood or
clustering estimator further comprises a neighboring aver-
age estimator that averages the estimator output value from
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the 1item k-nearest neighbors estimator with an output gen-
erated by a k-means estimator.
12. A method comprising:
obtaining, by a processing device, a first training data set
that includes, for each of multiple users, values asso-
ciated with the user for particular items including
ground truths that are specific to a digital experience
use scenario based on past user interactions with a
digital experience displayed in a user interface;
training, by the processing device in a {irst stage using the
first training data set, an estimator ensemble mncluding
an estimator combination of a singular value decom-
position estimator, a neighborhood or clustering esti-
mator, a factorization estimator, a time-aware estimator

that includes a time-aware neural factorization estima-
tor leveraging a time that a value 1s provided by the
user, a variational autoencoder estimator, and a gradient
boosting estimator in an estimator ensemble to generate
an estimation value;
obtaining, by the processing device, a second training data
set that includes, for each of the multiple users, values
associated with the user for particular items;

generating, by the processing device using the estimator
ensemble previously trained in the first stage and the
second training data set, multiple estimation values;

training, by the processing device 1n a second stage using
the multiple estimation values, a neural network to
generate a recommendation to enhance the digital expe-
rience for the user, the neural network including nodes
with weights that are tuned to minimize root mean
square errors between the ground truths and the rec-
ommendation to enhance the digital experience for the
user, the weights are updated using stochastic gradient
descent with Nesterov momentum and applying an
Adam optimizer; and

enhancing, by the processing device using the recommen-

dation, the digital experience for the user.

13. The method of claim 12, the recommendation being
one ol multiple potential values, the neural network com-
prising a 3-layer neural network followed by a mapping and
normalization layer, the mapping and normalization layer
outputting the recommendation as a set of probability dis-
tributions on the multiple values, and the training the neural
network comprising traiming the neural network to minimize
cross-entropy loss between the recommendation and a one-
hot representation of a ground truth using a loss function and
a regression tree.

14. The method of claim 12, the recommendation being
one of multiple potential values, the neural network com-
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prising a 3-layer neural network outputting the recommen-
dation as a single value output.
15. The method of claim 12, the particular items including
movies.
16. The method of claim 12, wherein the first training data
set and the second training data set are two different training
data sets.
17. A system comprising:
means for generating a trained estimator ensemble by
training, using a first training data set including ground
truths that are specific to a digital experience use
scenario based on past user interactions with a digital
experience displayed 1n a user interface, an estimator
ensemble including an estimator combination of a
singular value decomposition estimator, a neighbor-
hood or clustering estimator, a factorization estimator,
a time-aware estimator that includes a time-aware
neural factorization estimator leveraging a time that a
value 1s provided by the user, a variational autoencoder
estimator, and a gradient boosting estimator included 1n
an estimator ensemble to generate an estimation value;

means for training, using a second training data set and
multiple estimation values generated by the trained
estimator ensemble, a neural network to generate rec-
ommendations to enhance a digital experience for a
user, the neural network including nodes with weights
that are tuned to minimize root mean square e€rrors
between the ground truths and the recommendations to
enhance the digital experience for the user, the weights
are updated using stochastic gradient descent with
Nesterov momentum and applying an Adam optimizer;
and

a display device to display, based on a recommendation to

enhance the digital experience for the user generated by
the neural network, an enhanced digital experience.

18. The system of claim 17, the recommendation being
one of multiple potential values, the neural network com-
prising a 3-layer neural network followed by a mapping and
normalization layer, the mapping and normalization layer
outputting the recommendation as a set of probability dis-
tributions on the multiple values.

19. The system of claim 18, the means for training the
neural network including minimizing cross-entropy loss
between the recommendations and one-hot representations
of ground truths using a loss function and a regression tree.

20. The system of claim 17, the recommendation being
one of multiple potential values, the neural network com-
prising a 3-layer neural network outputting the recommen-
dation as a single value output.
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