q

Check for
updates

Adaptive Objective Functions and
Distance Metrics for Recommendation
Systems

Michael C. Burkhart®® and Kourosh Modarresi

Adobe Inc., 345 Park Ave, San José, CA 95110, USA
{mburkhar ,modarres}@adobe.com

Abstract. We describe, develop, and implement different models for the
standard matrix completion problem from the field of recommendation
systems. We benchmark these models against the publicly available Net-
flix Prize challenge dataset, consisting of users’ ratings of movies on a
1-5 scale. While the original competition concentrated only on RMSE, we
experiment with different objective functions for model training, ensem-
ble construction, and model/ensemble testing.

Our best-performing estimators were (1) a linear ensemble of base
models trained using linear regression (see ensemble e;, RMSE: 0.912)
and (2) a neural network that aggregated predictions from individual
models (see ensemble e4, RMSE: 0.912). Many of the constituent models
in our ensembles had yet to be developed at the time the Netflix com-
petition concluded in 2009. To our knowledge, not much research has
been done to establish best practices for combining these models into
ensembles. We consider this problem, with a particular emphasis on the
role that the choice of objective function plays in ensemble construction.

1 Background

In 2006, Netflix released a dataset containing 100,480,507 movie ratings (on a 1—
5 scale) from m = 480, 189 users on n = 17,770 movies [10]. The set was divided
into 99,072,112 training points and 1,408,395 probe points for contestants to
train and validate models. Netflix’s in-house algorithm Cinematch scored an
RMSE (root mean square error) of 0.9514 on the probe set. The prize of one
million dollars went to the first contestants to improve RMSE on a hidden test
set by 10%. A combined team of “Bellkor in BigChaos” and “Pragmatic Theory”
accomplished this in 2009 with an RMSE of 0.8558 on the probe data [9,61,79].
As one of the largest real-life datasets available, the Netflix Prize data remains
a benchmark for innovations in recommender systems today.

1.1 Results

Tables 1 and 2 catalogue the final results. Full details and methods follow in the
subsequent sections.

© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11537, pp. 608-621, 2019.
https://doi.org/10.1007/978-3-030-22741-8_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22741-8_43&domain=pdf
http://orcid.org/0000-0002-2772-5840
http://orcid.org/0000-0002-9419-8235
https://doi.org/10.1007/978-3-030-22741-8_43

Adaptive Metrics for Recommendation Systems 609

Table 1. Normalized model performance under different metrics.

Model | Name n. MAE | n. RMSE | n. Ls | n. Ly | n. Cos. Dist.
mo Baseline 0.878 0.901 0.913 | 0.923 | 0.807
mi irlba 5 0.860 0.888 0.903 | 0.916 |0.784
ma irlba 7 0.857 0.886 0.902 | 0.915 | 0.781
ms3 irlba 13 0.853 0.883 0.899 |0.913 | 0.775
my softImpute 5 0.787 0.841 0.876 | 0.904 |0.702
ms softImpute 7 0.780 0.837 0.874 | 0.903 | 0.695
me softImpute 13 0.773 0.836 0.876 | 0.909 | 0.692
mz softImpute 100 0.824 0.903 0.952 | 0.989 | 0.806
mg Movie k-NN 0.855 0.901 0.924 | 0.942 | 0.808
mg User k-means 0.845 0.893 0.922 | 0.947 | 0.794
mio Avg of mg, mg 0.832 0.869 0.890 | 0.906 |0.751
mi1 Cross k-NN 0.816 0.862 0.891 | 0.915 | 0.738
miz Time-aware cross k-NN 0.793 0.862 0.907 |0.943 | 0.735
mi3 Neural v5 0.784 0.854 0.897 |0.932 |0.723
miq Neural v11 0.780 0.830 0.861 | 0.886 | 0.684
mis Neural v13 0.771 0.836 0.879 | 0.915 | 0.695
mie Time-aware neural 0.764 0.829 0.87 0.904 | 0.681
mi7 Neural one-hot 0.791 0.842 0.874 | 0.901 | 0.702
mis Time-binned SVD 0.827 0.873 0.900 |0.922 |0.757
mig WALS 0.778 0.837 0.876 | 0.909 | 0.695
mao xgboost 0.79 0.845 0.879 | 0.908 | 0.708
maoq Gaussian factorization 0.769 0.839 0.885 | 0.922 | 0.696
Mmoo Sparse tensor factorization | 0.87 0.901 0.917 | 0.931 | 0.808
mas Poisson factorization 1.013 1.002 0.971 |0.942 | 0.741
Moy Factorization machine 0.862 0.892 0.908 | 0.921 | 0.792
mas VAE 0.881 0.905 0.917 |0.927 | 0.814

Table 2. Normalized ensemble performance under different metrics.

Ensemble | Name n. MAE |n. RMSE n. L3 |n.Lsy |n. Cos. Dist.
€o Subset avg 0.762 0.814 0.849 | 0.878 | 0.658
el Linear regression | 0.750 0.808 0.847 | 0.879 | 0.649
€2 Random forest | 0.757 0.811 0.847|0.877 | 0.653
es3 xgboost 0.754 0.809 0.848 |0.880 |0.649
e4 One-hot NN 0.749 | 0.808 0.848 |0.881 |0.648
es Neural network |0.752 0.811 0.851 |0.885 |0.653

2 Problem Description

Let M be an m x n matrix where entry M;; € {1,...,5} contains user i’s rating
of movie j. The matrix completion problem aims to recover the matrix M from
a subset 2 C [m] x [n] of its entries. We let P(M) denote the projection of

610 M. C. Burkhart and K. Modarresi

M onto this subset, which amounts to zeroing out unobserved elements of M.
We further divide the probe data randomly into a test set of 1,000,000 points
and a validation set of the remaining 408,395 points. Our aim is to construct
ensembles of predictors. We build individual predictors using the training set
and build ensemble estimators using the validation set. We then report RMSE
performance on the test set.

As the de facto standard error for regression tasks, RMSE penalizes larger
errors more than MAE (mean absolute error). However, the extent to which
RMSE accurately represents misclassification loss remains debatable. For exam-
ple, correctly distinguishing between 3- and 5-star ratings may prove much more
important than distinguishing between 1- and 3-star ratings [30]. If the ultimate
goal is to produce a user’s top-N movies, [17] argue precision- and recall-based
metrics much better characterize success.

3 SVD

SVD methods play an important role in matrix completion. We discuss this
approach first because many of the subsequent methods benefit greatly from
leveraging a learned SVD decomposition, either by using SVD parameters for
initialization or to estimate user-user and movie-movie similarities.

Under the common additional assumption that M is of low rank r, where
r < min{m,n}, we can consider the SVD of M given by M = UXV ", where
U is an m x r matrix with orthonormal columns, X' is an r x r diagonal matrix
of positive entries, and V is an r X n matrix with orthonormal columns. Such a
matrix has O(mr) degrees of freedom (assuming, as in our case, that m > n).
Considering uniform sampling with replacement as a coupon collector’s problem,
we then require at least O(mrlogm) entries from M in order for a successful
reconstruction [15]. We hypothesize that users rate movies based upon r under-
lying features, having importance relative to the singular values of M. The rows
of U correspond to feature weightings for each user and the rows of V' correspond
to feature weightings for each item.

3.1 Low Rank Recovery

[14,15] described sufficient conditions on the incoherence of the rows of U and
V such that M could be recovered with high probability through nuclear norm-
minimization. Recall that the nuclear norm is given | M|, = Y";_, 0x(M) where
o (M) denotes the kth singular value of M. The precise optimization problem
was to minimize ||M]. subject to Po(M) = Pgo(M), where M denotes the
estimate for M. Such a choice of objective function makes the problem convex
(indeed, all norms are convex), as opposed to minimizing rank(M). In a similar
vein, [52] developed “soft-thresholded” SVD to find M minimizing %HPQ(M -

M)||2 + X||M]||., where || - || denotes the Frobenius matrix norm.

Adaptive Metrics for Recommendation Systems 611

4 Factorization Models

We implemented numerous approaches to matrix factorization. In this approach,
we estimate M = UV where U is an n x k matrix of user factors and V is an
m x k matrix of item factors. Unconstrained matrix factorization [75,76] simply
finds U,V = argming v HPQ(UVT M)||?, where the matrix norm is the Frobe-
nius norm, and predicts M =UVT . The straightforward mathematical descrip-
tion leaves a handful of implementation choices. We can initialize U,V either
randomly or from the SVD decomposition by taking, for example, UV X, VXV
from a learned SVD model. We can perform optimization with the whole dataset
in memory or perform batch-based optimization by iterating over subsets of the
training data.

We also implemented Tikhonov-regularized [77,78] matrix factorization [66,
73] to solve U,V = argming.y||Po(UV™ — M)||? + A(|U||? + ||[V]|?) and non-
negative matrix factorization [46,47], with the constraint that all entries of U, V'
be non-negative. In our experience, model performance seemed tightly coupled
with initialization.

4.1 Accounting for Implicit Preferences

Hu et al. developed a weighted matrix factorization method that accounts for
the implicit preference a user gives to a movie through the act of watching and
rating it [38]. Called weighted alternating least squares (WALS), this method
seeks U,V = argmmUVHPQ(\/i@ (OUVT =M)I2+ MU + |V]]?) where
W denotes the number of movies a user has rated and ® denotes element-wise
multiplication. We used the contributed TensorFlow model and initialized with
SVD output.

4.2 Neural Network Matrix Factorizaton

This estimator constituted a feedforward fully-connected neural network map-
ping learned representation vectors for users and movies through the network
to predict the corresponding rating. Such an approach is commonly referred
to as neural network matrix factorization [21,32]. Learned model parameters
consist of m user vectors in R", n movie vectors in R", and all parameters
for the neural network. We initialized user vectors with the U matrix and the
movie vectors with the V' matrix from the soft-thresholded SVD model. Neural
network parameters received Glorot uniform initialization [28]. For each batch,
we performed three training steps: neural network parameters were updated,
user representations were updated, and movie representations were updated. We
applied Tikhonov Ls-regularization to U and V. For all parameter updates, we
used the Adam optimizer [41] that maintains different learning rates for each
parameter like AdaGrad [20] and allows these rates to sometimes increase like
Adadelta [84] but adapts them based on the first two moments from recent gradi-
ent updates. We used a leaky rectified linear unit (ReLU) activation [50,57], and

612 M. C. Burkhart and K. Modarresi

applied dropout after the first hidden layer to prevent overfitting [74]. Neither
Nesterov momentum-aided Adam [19] nor Batch Normalization [39] appeared to
improve our results. Many different versions of neural networks were developed
with minor variations in architecture, initialization, and training.

4.3 Probabilistic Matrix Factorization

Factorization can also be performed in a probabilistic setting, by specifying a
generative graphical model and then finding the maximum a posteriori (MAP)
parameters [70] or by performing Gibbs sampling in a Bayesian setting [69]. In
Gaussian matrix factorization, we model M;; ~"4 N(U; V" + bij,0%) where,
as before, U is an n x k matrix of user factors and V is an m x k matrix of
item factors. The b;; denote the average of the mean rating from user ¢ and the
mean rating of movie j, and account for user- and movie- effects. We learn U
and V to maximize the log likelihood of the observed data under this model.
In Poisson matrix factorization [29], M;; ~i-d Poisson(UiVjT +bi;). We predict
M;; = E[X,;;|X;; € {1,...,5}] where X;; ~ Poisson(UiVjT+bij) and U, V denote
our learned model parameters.

4.4 Factorization Machine

A factorization machine [64,65] of second degree learns a regression model §(z) =
wo + Zle w;T; + E1<i<j<e<vi7vj>37ixj for parameters w, € R and v, € R?,
k = 1...,¢. Such models were designed for sparsity, and in our case, we let
z € R™" denote a one-hot vector representation for the user concatenated
with a one-hot vector representation for the movie.

5 Neighborhood Models

Neighborhood-based techniques prove to be useful ingredients in a Netflix ensem-
ble [42,80]. A k-NN model estimates a function’s value at a test point by aver-
aging the values of the k nearest training points. In our case, we can predict the
rating for a (user, movie)-pair by averaging the user’s ratings for the k nearest
movies or averaging the k nearest users’ ratings of the movie. To do so, we must
first set k& and a metric for comparing two movies (or users). Given the sparse-
ness of the Netflix dataset, we must also account for the cases where we have
no training data on any of the k nearest neighbors of a given test point. In this
case, we typically fall back to the baseline global rating. A lower value of k tends
to increase the accuracy of the ratings we can calculate, but also increases the
number of test points for which we have insufficient training data.

In addition to comparing the performance yielded by choice of metric, it may
also be illustrative to consider how the choice of metric impacts training data
availability. Suppose, given a (user, movie)-pair, the user tends to have rated
many more of the 20 nearest movies under the cosine metric than of the 20 near-
est under the Euclidean metric. Under the hypothesis that the act of expressing

Adaptive Metrics for Recommendation Systems 613

a rating indicates preference (the ratings matrix is not revealed uniformly at
random), this fact might also provide us with information, independent of how
closely the ratings aligned to the target.

In [6], Bell, Koren, and Volinksy remark that neighborhood-based kernel
regression approaches may fail to account for relationships in the similarity space.
They describe Lord of the Rings as an example, where a neighborhood in movie-
movie similarity space might include all three movies from the trilogy, causing the
underlying effect from the trilogy to be counted three times. To account for this,
they optimize weights with shrinkage instead of relying on a predefined similarity
metric [5,7]. They also allow a neighborhood based method to defer judgement,
when provided insufficient or low-quality neighborhood information [8]. There
are also factorized versions of learned user similarity [80].

5.1 k-NN on SVD Latent Space

Consider the r-dimensional rows of U from the soft-thresholded SVD decom-
position of P (M). These vectors give a dense, low-dimensional (we let r = 5)
representation for each user. We use a k-d tree [11] to find the k¥ = 15 near-
est neighbors for each user according to the Euclidean metric. For a given (user,
movie)-pair in the probe set, we determine if any of the user’s neighbors rated the
queried movie, and if so, calculate a weighted average over these ratings, where
the weights are proportional to the exponentiated negative distance between the
user and her neighbors (c¢f. Nadaraya—Watson kernel-regression [56,82]).

A smaller value for k restricts to only the most similar neighbors, and so
decreases the bias of this estimate. However, it also increases the chance that
very few (or none) of the neighbors will have expressed a rating for the given
movie. In the case that fewer than three of the k£ = 15 nearest neighbors to a user
expressed a preference for a queried movie, then this method does not return a
rating, and the average ensemble is taken over the remaining estimators. This
allows the estimator to abstain from rating when it is not sufficiently confident,
and elegantly fall back to estimators that will be more reliable for a given (user,
movie)-pair. In a similar vein, we can cluster users according to k-means and
use the above approach with cluster members in place of neighbors. Clustering
can yield improved efficiency through memoization [54], as ratings for a given
cluster need only be computed once, and can then be applied to subsequent
queries. We also created a similar estimator that instead operates on the latent
representation for movies.

5.2 Crossing User Neighborhoods with Movie Neighborhoods

The original k-NN approach would find neighbors for either users or movies and
then aggregate ratings along a vector in the dual dimension (movies or users,
respectively). It is possible instead to use k-NN to find neighbors for both rows
and columns, and then aggregate along the sub-matrix consisting of the cross
product between neighboring users and neighboring movies. In other words, to
predict on a rating for user 7 on movie j, we would find indices N,, C [m]

614 M. C. Burkhart and K. Modarresi

corresponding to the neighbors of user i, and indices V,, C [n] corresponding
to the neighbors of movie j, and compute a weighted average over the available
rankings in Ny, X N,,, where the weights account for distances in user-space,
movie-space, and the difference in time between the ratings. This allows us to
leverage ratings of similar movies provided by similar users.

6 Gradient Boosted Trees

Ensemble methods combine multiple weak learners (estimators) into a single
strong estimator [18,22,31,71]. Breiman’s bootstrap aggregating (“bagging”)
approach trains multiple learners (in parallel) on bootstrapped samples. In con-
trast, boosting algorithms like Adaboost [25] and gradient boosting [26,27,51]
iteratively add weak learners to improve an ensemble, concentrating effort on
currently misclassified examples. (Note that concentrating on currently misclas-
sified examples is not required of a boosting algorithm: see, for example, Boost
by Majority [23] and Brown Boost [24]). In gradient boosting, we supply a loss
function L(-,-) and a method to train new weak learners h;; in our case, we use
regression trees [13]. For our application, we learned ratings for a (user, movie)
pair as a function of their representations in thresholded SVD feature space. We
used XGBoost [16] to build the estimator.

7 Variational Autoencoding

Variational autoencoding learns parameters for an autoencoder using a com-
mon Bayesian technique known as variational inference. An autoencoder models
the identity function with a neural network [33,68]. Its architecture includes
a hidden layer of relatively small dimensionality that serves as an information
bottleneck. Upon training, the output from this layer yields a lower-dimensional
representation of the original data. If we restrict to linear maps and impose Lo
loss on our reconstruction, autoencoding solves for the principal components
from PCA [37,59]. In this way, we can consider autoencoding to be a nonlinear
extension of PCA.

In Bayesian statistics, variational inference approximates intractable inte-
grals (expectations) through optimization, by substituting the integrand (prob-
ability distribution) for the closest member of a parametrized family of distribu-
tions [40]. When optimization is batch-based, this process is known as stochastic
variational inference [36,67].

A variational autoencoder learns a probabilistic autoencoding model, as two
conditional distributions described by neural networks. The encoding distri-
bution gg(z|x) describes how to sample the latent low-dimensional represen-
tation from an observation x and the decoding distribution p,(x|z) describes
how to sample a reconstructed z from the latent representation. Optimiza-
tion aims to maximize £(0,¢) = Eq,(.|s)[log py(2]2)] — Dk (gs(2]2)|[p(2)) For
computational expediency, the expectations above are often approximated via

Adaptive Metrics for Recommendation Systems 615

single-sample Monte Carlo integration [53]. In particular, for the ith data-
point X;, we sample Z; ~ go(-|X = z;)and form the unbiased approximations
Ego(212) [log Py (7, 2)] ~ log py(Xi, Z;) and Eg, (212 [l0g g6 (2|2)] =~ log go(Z:i| X).

Multiple authors have implemented VAE’s for collaborative filtering. [48]
learned item representations from known content data. [49] concentrated on
implicit ratings data; they consider observations in the form of a single user’s
(sparse) vector counts for item consumption, and argued that their two adjust-
ments, using a multinomial likelihood and adjusting the VAE objective, were
key to their performance.

We take X; € RY7770 to be user i’s ratings for each movie (more precisely, the
residual ratings after subtracting off half of user i and movie j’s mean ratings). We
model gg(z|x) = n10(z; f1(x), exp(fa(z)10)) where n1o denotes a 10-dimensional
Gaussian, I1g is the identity matrix, and fi, fo are leaky relu-activated neural
networks. Here, 6 corresponds to the parameters for the neural networks f, fs.
We model py(2i|x) = nm, (2; 9(z), In,)) where m; denotes the number of movies
user ¢ rated, g is a leaky relu-activated neural networks with a single hidden
layer, and ¢ denotes the parameters for g.

8 Incorporating Rating Time

The Netflix training and probe sets include a time stamp for each rating event.
We consider ways to leverage the effect of time in our model.

8.1 Time-Aware Neural Factorization

Building on the success of Neural Network Matrix Factorization, this model
added two time components as inputs to the neural network: (1) the time of
rating, normalized to lie in [0, 1] and (2) the approximate number of years
between the movie’s release and the time of rating. As updates to U and V are
sparse (any given row only updates a handful of times for each run through the
data set), we used a Nesterov Momentum optimizer [58,62] to train them, while
continuing to apply the Adam optimizer for the neural network parameters (all
of which are updated at each training step). Newer optimizers such as Adam
tweak the learning rate for each parameter depending on a window of previous
gradients for each parameter. This approach may not be best when updates to
a given parameter occur only sporadically [63], so here we use Nesterov.

8.2 Neural One-Hot Factorization with a Time Component

In this approach, we designed a neural network that takes user- and movie-
representations, and time features “movie release year” and “time of rating” and
“time of user’s first rating”, and outputs a probability distribution on {1,...,5}.
Training minimizes the cross-entropy between the (point-mass, or slightly mod-
ified point-mass) distribution on the underlying label and the model’s predicted
distribution. In addition to providing estimates for (user, movie, time)-ratings,
this model allows us to predict the variance or uncertainty of our estimate.

616 M. C. Burkhart and K. Modarresi

8.3 Time-Binned SVD

We can partition the training and probe data into approximately equally sized
bins based on the time stamps associated to them (so ratings that occur around
the same time will be placed in the same or a neighboring bin) and learn a
separate SVD model for each time window. Each of these models can then be
used to predict a rating for a given (user, movie, time) probe pair, and a weighted
average formed over all such predictions, with a higher weight given to the bin
into which the query was placed.

8.4 Tensor Factorization

After partitioning our data into time bins (in the same way as for time-
binned SVD), we can view our training data as a ratings tensor, where the
users by movies matrix now extends along a third, temporal dimension. This
allows us to perform time-aware factorization into three tensors, one for each
dimension. Hitchcock pioneered a generalization of SVD to tensors, known as
the minimal canonical polyadic (CP) decomposition [34], yielding the model
M =3Y""_, Nia} ® a? ® a}. We initialize with higher-order SVD [35,45,81] and
use alternating least squares to fit the model.

9 Ensembling

Famously, the winning solution to the Netflix Prize challenge consisted of a blend
of 107 different models [9,61,79]. Our best-performing models, too, aggregated
predictions from other models. After building individual models using only data
from the training set, we built ensembles of models using data only from the
validation set. We distinguish ensembles with the letter e from our base models
lettered m.

9.1 Average over a Selected Subset

Considering all (ig) size 10 subsets of {m,...,mi9}, we found the subset whose
simple average produced the smallest RMSE on the validation set. The average
of these models was then computed for the test set. We performed the brute-
force search with the Numba package that allows for just-in-time compilation
(to LLVM) and parallelized for-loops.

9.2 Linear Regression

We performed stepwise variable selection using the Bayesian Information Crite-
rion [72] (see also Akike’s Information Criterion [2]) for a multiple linear regres-
sion model. We also used linear regression to select the most informative subset
of 10 predictors [55].

Adaptive Metrics for Recommendation Systems 617

9.3 Random Forests for Regression

We used Breiman’s random forest regression algorithm [12] on the 10 top pre-
dictors, as determined by linear regression in the above section. We also tried a
boosting approach for ensembling, the XGBoost algorithm [16]. The importance
matrix calculated from boosting gives the top 10 models, in order, as: m14, Mg,
mis, Mg, My, M13, M17, M12, M8, Mio.

9.4 Neural Network Regression

We trained neural networks on the validation set using predictions from indi-
vidual models as inputs and true values on the validation set as outputs. We
adopted two main architectures: (1) a direct continuous-valued function that was
trained to minimize RMSE, and (2) a distributional function that was trained
to minimize cross-entropy between its pdf-outputs and one-hot representations
of the true values. These models were then applied to the test set to measure
performance.

9.5 Impact of Objective Function on Ensemble Building

To illustrate the role that the choice of objective function plays in ensemble
building, we took the boosted ensemble model and optimized it on the validation
data under a range of different objective functions. See Table3 for results. As
extreme gradient boosting uses second derivatives of the objective function, we
do not include L; or Huber loss.

Table 3. RMSE performance after optimizing es under different objective functions.

Objective | n. MAE |n. RMSE |n. L3 |n. Ly |n. Ls |n. Cos. Dist.
Lo 0.752 | 0.811 0.851 |0.885 |0.912 |0.653
Ls 0.780 0.817 0.842|0.863 |0.881 |0.655
Ly 0.810 0.836 0.846 | 0.855|0.864 | 0.664
Ls 0.844 0.859 0.858 | 0.857 |0.857|0.677
Cosh 0.766 0.813 0.843 | 0.868 |0.889 |0.653

10 Conclusions

The vast majority of benchmarks against the Netflix dataset report only RMSE
performance, in line with the prize’s original objective. For estimators that aim to
select a user’s top m movies, people sometimes consider precision-recall metrics.
We summarize our results under numerous metrics in Table1 for base models
and Table2 for ensembles. We normalize the L, metrics by diving by the loss
obtained by predicting the mean training value for all test points. For example,

618 M. C. Burkhart and K. Modarresi

predicting the training mean (3.67 stars) for all movies in the test set yields
an RMSE of 1.127, so all reported normalized RMSE’s correspond to standard
RMSE divided by 1.127.

Ensembles proved essential to the winning solution for the Netflix Grand
Prize. In 2009 when the competition concluded, matrix factorization and neigh-
borhood methods provided the fundamental components from which the ensem-
bles were built. Since 2009, researchers introduced many new machine learning
approaches for recommender systems including neural network matrix factoriza-
tion, factorization machines, extreme gradient boosting, and variational autoen-
coding. These methods have been tested individually, but little work has been
done to consider how these new approaches can be combined to form more effec-
tive ensemble estimators. This paper provides a first step in that direction.

A Implementation Details

In Python v3.6.0, we used Scikit-learn for k-NN and k-means [60] and Tensor-
flow for neural network training [1]. We performed some just-in-time for-loop
optimization with Numba [43]. We used Cython [4] to precompile some Python
functions for additional performance. The ttfm package provided our factoriza-
tion machine implementation. We compiled Tensorflow from source with MKL
(Intel) support and additional instructions.

In R v3.5.1, we used ‘irlba’ for truncated SVD [3] (cf. [44]) and ‘softIm-
pute’ for soft-thresholded SVD [52]. While increasing the rank r tended to result
in improved performance for both algorithms, returns were modest. We used
‘MASS’ for linear regression and ‘leaps’ for subset variable selection. We trained
random forests with ‘ranger’ [83] and performed boosting with ‘xgboost.” We
used the R package ‘Reticulate’ and the Python package ‘rp2’ to transfer data
between the two languages.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems. In: USENIX, pp. 265-283 (2016)

2. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom.
Contr. 19(6), 716-723 (1974)

3. Baglama, J., Reichel, L.: Augmented implicitly restarted Lanczos bidiagonalization
methods. SIAM J. Sci. Comput. 27(1), 19-42 (2005)

4. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.: Cython:
the best of both worlds. Comput. Sci. Eng. 13(2), 31-39 (2011)

5. Bell, R., Koren, Y.: Scalable collaborative filtering with jointly derived neighbor-
hood interpolation weights. In: IEEE International Conference on Data Mining,
pp. 43-52 (2007)

6. Bell, R., Koren, Y., Volinsky, C.: Modeling relationships at multiple scales to
improve accuracy of large recommender systems. In: SIGKDD, pp. 95-104 (2007)

7. Bell, R.M., Koren, Y.: Improved neighborhood-based collaborative filtering. In:
SIGKDD (2007)

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Adaptive Metrics for Recommendation Systems 619

Bell, R.M., Koren, Y.: Lessons from the Netflix prize challenge. SIGKDD Explor.
9(2), 75-79 (2007)

Bell, R.M., Koren, Y., Volinsky, C.: The BellKor solution to the Netflix prize (2009)
Bennett, J., Lanning, S.: The Netflix prize. In: KDD Cup and Workshop (2007)
Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509-517 (1975)

Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996)

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.: Classification and Regression
Trees. Chapman & Hall/CRC in Boca Raton, FL (1984)

Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Found.
Comput. Math. 9(6), 717 (2009)

Candes, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix com-
pletion. IEEE Trans. Inf. Theory 56(5), 2053-2080 (2010)

Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: SIGKDD,
pp. 785-794 (2016)

Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: RecSys, pp. 39-46 (2010)

Dasarathy, B.V., Sheela, B.V.: A composite classifier system design: concepts and
methodology. Proc. IEEE 67(5), 708-713 (1979)

Dozat, T.: Incorporating Nesterov momentum into Adam. In: International Con-
ference on Learning Representations (2016)

Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121-2159 (2011)
Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization (2015).
arXiv:1511.06443

Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1-26
(1979)

Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2),
256-285 (1995)

Freund, Y.: An adaptive version of the boost by majority algorithm. Mach. Learn.
43(3), 293-318 (2001)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119-139 (1997)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189-1232 (2001)

Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),
367-378 (2002)

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: International Conference on Artificial Intelligence and Statis-
tics, vol. 9, pp. 249-256 (2010)

Gopalan, P., Hofman, J.M., Blei, D.M.: Scalable recommendation with hierarchical
poisson factorization. In: Uncertainty in Artificial Intelligence, pp. 326-335 (2015)
Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recom-
mendation tasks. J. Mach. Learn. Res. 10, 2935-2962 (2009)

Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal.
Mach. Intell. 12(10), 993-1001 (1990)

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: International World Wide Web Conference, pp. 173-182 (2017)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504-507 (2006)

http://arxiv.org/abs/1511.06443

620

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.

56.

57.

M. C. Burkhart and K. Modarresi

Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J.
Math. Phys. 6, 164-189 (1927)

Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or
tensor. J. Math. Phys. 7, 39-79 (1928)

Hoffman, M., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J.
Mach. Learn. Res. 14, 1303-1347 (2013)

Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321-377
(1936)

Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: IEEE International Conference on Data Mining, pp. 263-272 (2008)
IToffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448-456 (2015)

Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to vari-
ational methods for graphical models. Mach. Learn. 37(2), 183-233 (1999)
Kingma, D.P.,; Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: SIGKDD, pp. 426-434 (2008)

Lam, S.K., Pitrou, A., Seibert, S.: Numba. In: Proceedings of the Workshop LLVM
Compiler (2015)

Lanczos, C.: An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. NIST 45(4), 255-282 (1950)
Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decom-
position. STAM J. Matrix Anal. Appl. 21(4), 1253-1278 (2000)

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401, 788-791 (1999)

Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
Advances in Neural Information Processing Systems, pp. 556-562 (2000)

Li, X., She, J.: Collaborative variational autoencoder for recommender systems.
In: ACM SIGKDD, pp. 305-314 (2017)

Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders
for collaborative filtering. In: International World Wide Web Conference, pp. 689—
698 (2018)

Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neuralnet-
work acoustic models. In: International Conference on Machine Learning, vol. 30
(2013)

Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradi-
ent descent. In: Advances in Neural Information Processing Systems, pp. 512-518
(2000)

Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for
learning large incomplete matrices. J. Mach. Learn. Res. 11, 2287-2322 (2010)
Metropolis, N., Ulam, S.M.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247),
335-341 (1949)

Michie, D.: Memo functions and machine learning. Nature 218, 19-22 (1968)
Miller, A.J.: Selection of subsets of regression variables. J. Roy. Stat. Soc. Ser. A
147(3), 389425 (1984)

Nadaraya, E.A.: On estimating regression. Teor. Veroyatnost. i Primenen. 9(1),
157-159 (1964)

Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines.
In: International Conference on Machine Learning (2010)

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.

74.

75.

76.

7.

78.

79.
80.

81.
82.

83.
84.

Adaptive Metrics for Recommendation Systems 621

Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate o(1/sqr(k)). Soviet Math. Dokl. 27, 372-376 (1983)

Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos.
Mag. 2(11), 559-572 (1901)

Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825-2830 (2011)

Piotte, M., Chabbert, M.: The pragmatic theory solution to the Netflix grand prize
2009

%’olya{{, B.T.: Some methods of speeding up the convergence of iteration methods.
USSR Comput. Math. Math. Phys. 4(5), 1-17 (1964)

Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and Beyond. In:
International Conference on Learning Representations (2018)

Rendle, S.: Factorization machines. In: IEEE International Conference on Data
Mining, pp. 995-1000 (2010)

Rendle, S.: Factorization machines with LibFM. ACM Trans. Intell. Syst. Technol.
3(3), 57 (2012)

Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collab-
orative prediction. In: International Conference on Machine Learning (2005)
Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat.
22(3), 400-407 (1951)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation, vol. 1, pp. 318-362 (1986)

Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using
Markov chain Monte Carlo. In: International Conference on Machine Learning,
pp. 880-887 (2008)

Salakhutdinov, R.R., Mnih, A.: Probabilistic matrix factorization. In: Advances in
Neural Information Processing Systems, pp. 1257-1264 (2008)

Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197-227
1990

échwgrz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461-464 (1978)
Srebro, N.; Rennie, J., Jaakkola, T.S.: Maximum-margin matrix factorization. In:
Advances in Neural Information Processing Systems, pp. 1329-1336 (2005)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929-1958 (2014)

Tenenbaum, J.B., Freeman, W.T.: Separating style and content. In: Advances in
Neural Information Processing Systems, pp. 662-668 (1997)

Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear mod-
els. Neural Comput. 12(6), 1247-1283 (2000)

Tikhonov, A.N.: On the stability of inverse problems. Proc. USSR Acad. Sci. 39(5),
195-198 (1943)

Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization
method. Proc. USSR Acad. Sci. 151(3), 501-504 (1963)

Toscher, A., Jahrer, M.: The BigChaos solution to the Netflix grand prize (2009)
Toscher, A., Jahrer, M., Legenstein, R.: Improved neighborhood-based algorithms
for large-scale recommender systems. In: KDD Cup (2008)

Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279-311 (1966)

Watson, G.S.: Smooth regression analysis. Sankhya Ser. A 26(4), 359-372 (1964)
Wright, M., Ziegler, A.: Ranger. J. Stat. Softw. 77(1), 1-17 (2017)

Zeiler, M.D.: ADADELTA: an adaptive learning rate method (2012).
arXiv:1212.5701

http://arxiv.org/abs/1212.5701

	Adaptive Objective Functions and Distance Metrics for Recommendation Systems
	1 Background
	1.1 Results

	2 Problem Description
	3 SVD
	3.1 Low Rank Recovery

	4 Factorization Models
	4.1 Accounting for Implicit Preferences
	4.2 Neural Network Matrix Factorizaton
	4.3 Probabilistic Matrix Factorization
	4.4 Factorization Machine

	5 Neighborhood Models
	5.1 k-NN on SVD Latent Space
	5.2 Crossing User Neighborhoods with Movie Neighborhoods

	6 Gradient Boosted Trees
	7 Variational Autoencoding
	8 Incorporating Rating Time
	8.1 Time-Aware Neural Factorization
	8.2 Neural One-Hot Factorization with a Time Component
	8.3 Time-Binned SVD
	8.4 Tensor Factorization

	9 Ensembling
	9.1 Average over a Selected Subset
	9.2 Linear Regression
	9.3 Random Forests for Regression
	9.4 Neural Network Regression
	9.5 Impact of Objective Function on Ensemble Building

	10 Conclusions
	A Implementation Details
	References

