
Determining Adaptive Loss Functions
and Algorithms for Predictive Models

Michael C. Burkhart(B) and Kourosh Modarresi

Adobe Inc., 345 Park Avenue, San José, CA 95110, USA
{mburkhar,modarres}@adobe.com

Abstract. We consider the problem of training models to predict
sequential processes. We use two econometric datasets to demonstrate
how different losses and learning algorithms alter the predictive power
for a variety of state-of-the-art models. We investigate how the choice of
loss function impacts model training and find that no single algorithm
or loss function results in optimal predictive performance. For small
datasets, neural models prove especially sensitive to training parame-
ters, including choice of loss function and pre-processing steps. We find
that a recursively-applied artificial neural network trained under L1 loss
performs best under many different metrics on a national retail sales
dataset, whereas a differenced autoregressive model trained under L1

loss performs best under a variety of metrics on an e-commerce dataset.
We note that different training metrics and processing steps result in
appreciably different performance across all model classes and argue for
an adaptive approach to model fitting.

1 Introduction

We develop time series estimators for current datasets and use them to iter-
atively forecast a few steps into the future. We consider the effects of using
different training loss functions and different evaluation metrics. The training
methodology, including the choice of loss function, seems to impact model per-
formance more than typically reported, potentially due to the relatively smaller
amounts of available training data.

2 Datasets

We used time series datasets from the fred Economic Data portal provided by
the Federal Reserve Bank of St. Louis.

2.1 Advance Retail Sales

The Advance Retail Sales: Retail and Food Services Total (rsafsna) dataset is a
monthly accounting of retail and food services sales totals in the US, provided by
the U.S. Bureau of the Census [21]. The data begins in January 1992 and includes
c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11537, pp. 595–607, 2019.
https://doi.org/10.1007/978-3-030-22741-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22741-8_42&domain=pdf
http://orcid.org/0000-0002-2772-5840
http://orcid.org/0000-0002-9419-8235
https://doi.org/10.1007/978-3-030-22741-8_42

596 M. C. Burkhart and K. Modarresi

a final estimated value for October 2018. This monthly data is strongly periodic.
We split the time series into two contiguous sets: a training set containing 310
observations from Jan. 1992 to Oct. 2017 and a testing set of 12 observations from
Nov. 2017 to Oct. 2018. Models learned to use the previous � = 11 observations
to predict the next datapoint. All training and validation was conducted on the
training set. See Fig. 1(left) for a plot of the data and Fig. 2 for its autocorrelation
and partial autocorrelation plots.

Fig. 1. (Left) Plot of the Advance Retail Sales dataset. Note the strong seasonality
for this monthly data. The recession of 2008 is clearly visible in the data. (Right) Plot
of the E-Commerce Retail Sales dataset. This coarser, quarterly data displays less
seasonality than the Retail Sales numbers. While the 2008 recession remains visible,
its relative effect seems less pronounced. Even as total consumption dropped, the share
of online consumption increased.

Fig. 2. Diagnostic plots for the Advance Retail Sales dataset. (Left) Autocorrelation
function; (Right) Partial Autocorrelation function. The two bumps in the acf corre-
spond to lags at times 12 and 24, exactly one and two years prior, respectively. Similarly,
the bump in the pacf corresponds to the lag at time 12, exactly one year prior.

2.2 E-Commerce Retail Sales

The E-Commerce Retail Sales (ecomsa) dataset is a quarterly accounting of
goods and services sales totals where orders were placed or prices were negoti-
ated online. The U.S. Bureau of the Census provides data from Q4 1999 to Q3

Determining Adaptive Loss Functions and Algorithms for Predictive Models 597

2018 [22]. We split the time series into two contiguous sets: a training set contain-
ing 72 observations from Q4 1999 to Q3 2017 and a testing set of 4 observations
from Q4 2017 to Q3 2018. Models used the previous 7 observations to predict
the next datapoint. All training and validation was conducted on the training
set. See Fig. 1(right) for a plot of the data and Fig. 3 for its autocorrelation and
partial autocorrelation plots.

Fig. 3. Diagnostic plots for the E-Commerce Retail Sales dataset. (Left) Autocorrela-
tion function; (Right) Partial Autocorrelation function. Periodicity may be less appar-
ent for this data due to the general strong trend of growth.

3 Methodology

We describe some of the modeling approaches used on this data. Consider a
real-valued time series X1,X2, Our problem is to use the historical data
Xt−�,Xt−�+1, . . . , Xt−1 to predict the next realization of the series Xt. The
length � of the historical data used by our model is often referred to as number
of lags in the model. Once we have learned a model for Xt given Xt−�:t−1, we
can use it iteratively to predict multiple steps into the future by using our pre-
dictions in place of known historical data. For example, if we predict X̂t given
Xt−�:t−1, we can then predict X̂t+1 given Xt−�+1:t−1, X̂t. Note however, that the
uncertainty associated to this second prediction X̂t+1 will be higher than that
for X̂t, because we are now using uncertain data to make predictions.

3.1 Autoregressive Model

An autoregressive model with � lags models

Xt = α1Xt−1 + · · · + α�Xt−� + εt

where εt ∼ N (μ, σ2) for parameters α1, . . . , α�, μ, σ. We often denote such a
model AR(�). The hyperparameter � is often selected by considering the partial
autocorrelation function, that measures the correlation between Xt and Xt−i

after accounting for the linear dependence of Xt on Xt−1, . . . , Xt−i+1.

598 M. C. Burkhart and K. Modarresi

3.2 Artificial Neural Network Model

We can use a fully-connected multiple layer artificial neural network fθ : R� → R

to model
Xt = fθ(Xt−1, . . . , Xt−�)

We learn the parameters θ by passing batches of data to any standard optimizer.

3.3 Long Short-Term Memory Model

A Long Short-Term Memory model [7,9] maintains a stateful representation of
history to overcome the vanishing and exploding gradient problems encountered
by rnn’s when presented with long-term dependencies [2]. See Fig. 4 for an
illustration.

Fig. 4. Schematics for recurrent neural network variants lstm (left, shown in sequence)
and gru (right, cell only). Images courtesy of Chris Olah; re-used with permission.

3.4 Gated Recurrent Unit Model

A variant of the lstm, the Gated Recurrent Unit (gru) model simplifies lstm
architecture [3]. Chung et al. suggested that gru’s can outperform lstm’s on
smaller datasets [4]. See Fig. 4 for a side-by-side comparison.

3.5 Temporal Convolutional Network Model

The Temporal Convolutional Network (tcn) model presents an alternative neu-
ral network-based approach to time series modeling [1,12]. This convolutional
architecture creates connections that are causal (dependent only on previous
time steps) and dilated (periodic in time). See Fig. 5 for a schematic. Sometimes
such models employ residual blocks [8] that stack networks and include a copy
of the first layer in the final layer.

Determining Adaptive Loss Functions and Algorithms for Predictive Models 599

Fig. 5. Schematic for tcn model. Causal convolutions are those that only go backward
in time. Dilated convolutions use only every k-th entry. Stacking dilated convolutions
increases the receptive field multiplicatively. Diagram re-used from [1].

3.6 Gaussian Mixture Model

A Gaussian Mixture Model fits the model

p(x) =
∑k

i=1 ϕi · η(x;μi, Σi)

where η(·;μi, Σi) denotes the p.d.f. of a normal distribution with mean μi and
covariance Σi. This model consists of a mixture of k Gaussian distributions. As
both the latent parameters and mixture memberships must be inferred from
the dataset, the Expectation Maximization (em) algorithm is commonly used
to fit such a model [5]. Expectation Maximization alternates between comput-
ing soft assignments (expectations) of datapoints to mixtures and finding the
latent parameters that maximize model likelihood under these assignments. Its
estimates converge to the Maximum Likelihood (mle) parameters [23].

Note that gmm is a generative model. We distinguish generative probabilistic
models that learn the joint distribution p(x, y) from discriminative probabilis-
tic models that learn the conditional distribution p(y|x) [14]. For example, we
consider most regressive models (including the autoregressive and Gaussian pro-
cess models described here) to be discriminative. To apply this model for our
purposes here, we learned the joint distribution of (Xt−�:t−1,Xt) as a Gaussian
mixture and then for a given test sequence xt−�:t−1, we predicted

x̂t = arg max
xt

{pθ(xt−�:t−1, xt)}

under our trained model pθ.

3.7 Gaussian Process Regression Model

A Gaussian Process (gp) is an infinite collection of random variables for which
every finite subset has a multivariate Gaussian distribution [17]. For the pur-
poses of a regression, the gp specifies a covariance structure on function outputs

600 M. C. Burkhart and K. Modarresi

that depends on the function inputs. Given a dataset {(xi, yi)}n
i=1, and a ker-

nel function kθ(·, ·) where θ is a set of tunable hyperparameters, the gp model
specifies

Y1:n|x1:n ∼ N (0,K + σ2In)

where Kij = kθ(xi, xj) for each 1 ≤ i, j ≤ n, and σ2 is a tunable hyperparameter
for process noise. Learning amounts to finding the hyperparameters θ, σ2 that
maximize the likelihood for our data under this model. We made predictions at
a new test point x∗ by leveraging the consistency of our stochastic model. We
consider [

Y1:n

Y∗

]

∼ N
(

0,

[
Kθ + σ2In (k∗)�

k∗ k∗∗

])

where (k∗)i = kθ(xi, x∗) and k∗∗ = kθ(x∗, x∗). This implies that

Y∗|x1:n, Y1:n, x∗ ∼ N (
(k∗)�K −1Y1:n, k∗∗ − (k∗)�K −1k∗

)

We used the mean of this conditional distribution for predictive purposes, with
a squared exponential kernel.

4 Results

We tuned the artificial neural networks by hand. The following choices were
made for each network:

– Model architecture: For recurrent neural networks, the size of the hidden layer
and whether to include fully connected layers above or below the recurrent
layer can significantly alter model performance.

– Regularization: Common approaches include dropout [18], added Gaussian
noise [15], batch normalization [10], and Tikhonov regularization [19,20].

– Optimizer: There are a variety of modern optimization strategies that adap-
tively vary learning rates and add momentum. For this project, we used the
Adam optimizer [11].

– Optimization parameters: Learning rate and training batch size were hand-
selected.

– Synergistic effects: Choices in one category impact choices in another. For
example, learning rate and training batch size are interdependent: adjust-
ments to learning rate should often accompany adjustments to batch size,
and vice versa. While the literature presents many individual solutions for
deep learning, less is known about how they interact. For example, there has
been considerable discussion on where to place dropout in a recurrent archi-
tecture [6,16,24]. In tcn’s, we saw a clear connection between architecture
size and learning rate as well.

For all neural models, we preprocessed data by subtracting the training mean
and dividing by the training standard deviation for each datapoint. We trained
and predicted on these scaled data, and inverted the transformation before cal-
culating prediction error.

Determining Adaptive Loss Functions and Algorithms for Predictive Models 601

For the models denoted “Δ,” we learned and predicted on the time series of
differences, and then took a cumulative sum of predicted differences to tabulate
our final predictions. Differencing can remove time-based effects in the data
(non-stationarities).

4.1 Advance Retail Sales

The ar predictions appear to be overly conservative. Training under the L1 objec-
tive loss results in uniformly worse performance than L2 (for the non-differenced
model) (Fig. 6).

The gru and lstm architectures generally perform less well than the ann
architecture (Fig. 7).

Fig. 6. Model predictions for Advance Retail Sales data on models trained to predict
Xt from Xt−�:t−1 For clarity, we only include the L2 training runs. Full numerical
results are in Table 1.

Due to the way we tested the models, a single missed prediction feeds back
into the model and compounds the error for subsequent results. For example,
the lstm model badly misses its second prediction and then appears to be off by
a time step for the rest of the test. These models have not been given the month
of the year as input, only the 11 previous values for retail sales. We see how a
single poor prediction that is fed back into the model as input can disrupt the
model’s sense of seasonality.

Differencing proved especially effective for the recurrent neural network
models.

602 M. C. Burkhart and K. Modarresi

Fig. 7. Model predictions for Advance Retail Sales data on models trained to predict
ΔXt from ΔXt−�:t−1, reconstructed from last training point and predicted differences.
For clarity, we only include the L2 training runs. Full numerical results are in Table 1.

Fig. 8. Model predictions for E-Commerce Retail Sales data on models trained to pre-
dict Xt from Xt−�:t−1; For clarity, we only include the L2 training runs. Full numerical
results are in Table 2.

4.2 E-Commerce Retail Sales

For L2, we used least squares optimization, for which the optimal parameter
values have explicit solutions. For L1 and L4, we performed gradient descent
with momentum to find parameters that minimized training error on the full
training set. We initialized at the L2 optimum and checked for convergence.

Determining Adaptive Loss Functions and Algorithms for Predictive Models 603

Fig. 9. Model predictions for E-Commerce Retail Sales data on models trained to
predict ΔXt from ΔXt−�:t−1, reconstructed from last training point and predicted
differences. For clarity, we only include the L2 training runs. Full numerical results are
in Table 2.

Finally, it is worth noting that the performance of the tcn (non-differenced)
on this data set was extremely poor (for the non-differenced model), under all
objective functions. For any metric we consider, it would be much better to
use the null predictions than the tcn predictions. It is possible that the tcn
architecture requires a different regularization or training strategy in this case
of a very small dataset. One might imagine that the tcn is reverting to the
mean of the training data. (We note in Fig. 1 the strong upward trend of this
data.) In the future, it may be advisable to include a separate linear trend for
datasets like this, and fit the neural networks to residuals. Differencing appears
to ameliorate this issue (Figs. 8 and 9).

For the ar model, differencing effectively increases the lag by one time step
and removes any linear dependence on time. We see fairly similar results for the
differenced and non-differenced versions of the ar and ann models. However, for
the recurrent models (lstm & gru) and the tcn, taking differences can prove
to be a very effective way to boost model performance.

A Implementation Details

For this project, we used the Miniconda v.4.5.11 package manager with Python
v.3.6.7. All neural networks were constructed in Keras v.2.2.4 with a Tensorflow
v1.12.0 backend running Intel mkl optimizations.

604 M. C. Burkhart and K. Modarresi

Table 1. Normalized Model Performance on the Advance Retail Sales dataset. Models
were trained to optimize the loss function “obj.” (for objective function). Here, “n”
denotes the quantity has been normalized by dividing out the norm returned from pre-
dicting the final training value for all test data, “Cos.” denotes cosine distance, “Corr.”
denotes Pearson correlation distance, and “Mah.” denotes Mahalanobis distance [13].

Model obj. n.-mae n.-rmse n.-L3 n.-L4 n.-L∞ n.-Cos. mape Corr. Mah.

ar L1 0.828 0.921 0.963 0.97 0.919 1.138 0.06 0.955 6.467

ar-Δ L1 0.326 0.351 0.35 0.34 0.278 0.069 0.022 0.033 4.897

ar L2 0.642 0.681 0.694 0.689 0.579 0.668 0.045 0.146 3.894

ar-Δ L2 0.41 0.435 0.433 0.421 0.326 0.122 0.028 0.062 4.803

ar L4 0.638 0.663 0.664 0.656 0.593 0.608 0.045 0.184 4.26

ar-Δ L4 0.604 0.6 0.583 0.562 0.447 0.187 0.041 0.094 5.244

ann L1 0.198 0.204 0.204 0.2 0.18 0.039 0.014 0.017 3.998

ann-Δ L1 0.281 0.296 0.293 0.284 0.22 0.06 0.019 0.03 5.209

ann L2 0.261 0.272 0.274 0.271 0.242 0.065 0.018 0.03 3.594

ann-Δ L2 0.288 0.299 0.294 0.285 0.223 0.065 0.02 0.033 4.824

ann L4 0.636 0.643 0.638 0.626 0.583 0.2 0.043 0.1 4.971

ann-Δ L4 0.316 0.33 0.328 0.319 0.256 0.142 0.022 0.073 4.88

gru L1 1.056 1.055 1.061 1.069 1.085 1.076 0.072 1.473 5.682

gru-Δ L1 0.384 0.367 0.351 0.336 0.277 0.076 0.026 0.034 4.668

gru L2 0.843 0.793 0.761 0.735 0.663 0.443 0.058 0.212 6.044

gru-Δ L2 0.216 0.221 0.222 0.22 0.209 0.068 0.015 0.028 5.076

gru L4 0.703 0.694 0.674 0.654 0.604 0.643 0.05 0.396 6.059

gru-Δ L4 0.489 0.476 0.459 0.442 0.37 0.063 0.034 0.03 4.408

lstm L1 1.066 1.027 0.991 0.956 0.809 0.336 0.074 0.137 6.0

lstm-Δ L1 0.281 0.276 0.268 0.259 0.225 0.061 0.019 0.025 4.291

lstm L2 1.652 1.635 1.593 1.538 1.214 2.761 0.115 1.04 6.898

lstm-Δ L2 0.222 0.234 0.236 0.235 0.215 0.078 0.016 0.036 3.948

lstm L4 0.441 0.526 0.583 0.614 0.642 0.332 0.032 0.183 4.828

lstm-Δ L4 0.218 0.258 0.285 0.298 0.309 0.085 0.015 0.043 5.735

tcn L1 0.915 0.917 0.911 0.898 0.793 1.182 0.064 1.108 6.752

tcn-Δ L1 0.321 0.3 0.284 0.27 0.226 0.084 0.022 0.009 3.651

tcn L2 0.798 0.775 0.755 0.734 0.656 0.739 0.055 0.376 5.108

tcn-Δ L2 0.401 0.38 0.358 0.339 0.268 0.1 0.028 0.02 3.786

tcn L4 1.004 0.991 0.977 0.962 0.916 0.902 0.069 0.57 6.123

tcn-Δ L4 0.411 0.396 0.377 0.359 0.29 0.142 0.028 0.017 4.126

gmm mle 0.219 0.22 0.218 0.214 0.203 0.063 0.015 0.028 4.516

gmm-Δ mle 0.225 0.233 0.233 0.228 0.196 0.042 0.016 0.02 4.829

gpr mle 0.729 0.674 0.627 0.588 0.435 0.097 0.051 0.034 6.062

gpr-Δ mle 0.209 0.237 0.262 0.279 0.299 0.082 0.015 0.025 4.203

Determining Adaptive Loss Functions and Algorithms for Predictive Models 605

Table 2. Normalized Model Performance on the E-Commerce Retail Sales dataset.
Models were trained to optimize the loss function “obj.” (for objective function). Here,
“n” denotes the quantity has been normalized by dividing out the norm returned from
predicting the final training value for all test data, “Cos.” denotes cosine distance,
“Corr.” denotes Pearson correlation distance, and “Mah.” denotes Mahalanobis dis-
tance.

Model obj. n.-mae n.-rmse n.-L3 n.-L4 n.-L∞ n.-Cos. mape Corr. Mah.

ar L1 0.058 0.056 0.054 0.053 0.049 0.002 0.005 0.001 0.676

ar-Δ L1 0.015 0.014 0.013 0.012 0.011 0.001 0.001 0.0 0.088

ar L2 0.017 0.02 0.02 0.02 0.019 0.001 0.001 0.0 0.432

ar-Δ L2 0.051 0.05 0.049 0.048 0.043 0.002 0.004 0.0 0.472

ar L4 0.02 0.027 0.031 0.033 0.036 0.003 0.002 0.0 0.383

ar-Δ L4 0.069 0.071 0.073 0.074 0.077 0.006 0.006 0.0 0.593

ann L1 0.283 0.281 0.285 0.29 0.305 0.062 0.023 0.003 0.847

ann-Δ L1 0.082 0.083 0.083 0.083 0.079 0.007 0.007 0.0 0.36

ann L2 0.206 0.193 0.185 0.18 0.171 0.011 0.017 0.005 0.663

ann-Δ L2 0.215 0.221 0.224 0.225 0.226 0.055 0.017 0.0 1.038

ann L4 0.614 0.645 0.64 0.632 0.593 0.784 0.051 0.152 5.266

ann-Δ L4 0.377 0.396 0.404 0.407 0.412 0.21 0.031 0.0 1.58

gru L1 0.724 0.681 0.659 0.647 0.635 0.123 0.059 0.001 0.692

gru-Δ L1 0.778 0.839 0.879 0.905 0.957 0.909 0.063 0.007 2.434

gru L2 1.263 1.204 1.176 1.162 1.153 0.491 0.104 0.002 1.361

gru-Δ L2 0.462 0.425 0.402 0.386 0.33 0.019 0.038 0.007 1.976

gru L4 1.705 1.629 1.592 1.576 1.567 0.872 0.14 0.003 1.791

gru-Δ L4 0.117 0.12 0.12 0.12 0.111 0.015 0.01 0.001 0.507

lstm L1 1.25 1.208 1.19 1.183 1.182 0.642 0.102 0.001 1.678

lstm-Δ L1 0.248 0.242 0.237 0.233 0.223 0.05 0.021 0.012 2.538

lstm L2 0.97 1.002 1.028 1.047 1.093 0.959 0.079 0.006 2.06

lstm-Δ L2 0.293 0.312 0.332 0.347 0.375 0.129 0.024 0.016 1.904

lstm L4 2.677 2.836 3.01 3.142 3.387 7.211 0.218 0.11 5.676

lstm-Δ L4 0.732 0.922 1.029 1.088 1.178 1.903 0.059 0.032 2.898

tcn L1 2.978 2.749 2.61 2.523 2.299 1.554 0.246 1.999 3.625

tcn-Δ L1 0.284 0.288 0.29 0.29 0.287 0.084 0.023 0.0 1.132

tcn L2 2.625 2.428 2.308 2.234 2.041 1.284 0.216 1.874 3.07

tcn-Δ L2 0.299 0.301 0.302 0.301 0.297 0.088 0.024 0.0 1.219

tcn L4 3.148 2.904 2.756 2.662 2.406 1.723 0.26 1.968 3.627

tcn-Δ L4 0.332 0.335 0.337 0.337 0.335 0.112 0.027 0.0 1.287

gmm mle 0.02 0.021 0.021 0.022 0.021 0.001 0.002 0.001 0.425

gmm-Δ mle 0.026 0.029 0.031 0.033 0.035 0.005 0.002 0.001 0.177

gpr mle 0.19 0.201 0.209 0.214 0.225 0.052 0.015 0.001 0.499

gpr-Δ mle 0.345 0.336 0.33 0.327 0.322 0.072 0.028 0.0 1.709

606 M. C. Burkhart and K. Modarresi

References

1. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convo-
lutional and recurrent networks for sequence modeling. ArXiv e-prints (2018).
arXiv:1803.01271

2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Conference on Empirical Methods in Natural
Language Processing, pp. 1724–1734 (2014)

4. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. In: NIPS Workshop on Deep Learning
(2014)

5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

6. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recur-
rent neural networks. In: Advances in Neural Information Processing Systems, pp.
1019–1027 (2016)

7. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with lstm. Neural Comput. 12(10), 2451–2471 (2000)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
vol. 37, pp. 448–456 (2015)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

12. Lea, Colin, Vidal, René, Reiter, Austin, Hager, Gregory D.: Temporal convolutional
networks: a unified approach to action segmentation. In: Hua, Gang, Jégou, Hervé
(eds.) ECCV 2016. LNCS, vol. 9915, pp. 47–54. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49409-8 7

13. Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Nat. Inst. Sci.
India 2(1), 49–55 (1936)

14. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of
logistic regression and naive Bayes. In: Advances in Neural Information Processing
Systems, pp. 841–848 (2002)

15. Noh, H., You, T., Mun, J., Han, B.: Regularizing deep neural networks by noise:
its interpretation and optimization. In: Advances in Neural Information Processing
Systems, pp. 5109–5118 (2017)

16. Pham, V., Bluche, T., Kermorvant, C., Louradour, J.: Dropout improves recur-
rent neural networks for handwriting recognition. In: International Conference on
Frontiers in Handwriting Recognition, pp. 285–290 (2014)

17. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

http://arxiv.org/abs/1803.01271
https://doi.org/10.1007/978-3-319-49409-8_7
https://doi.org/10.1007/978-3-319-49409-8_7

Determining Adaptive Loss Functions and Algorithms for Predictive Models 607

19. Tikhonov, A.N.: On the stability of inverse problems. Doklady Akademii Nauk
SSSR 39(5), 195–198 (1943)

20. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization
method. Doklady Akademii Nauk SSSR 151(3), 501–504 (1963)

21. U.S. Bureau of the Census: Advance retail sales: Retail and food services, total
[RSAFSNA] dataset. FRED, Federal Reserve Bank of St. Louis (2018)

22. U.S. Bureau of the Census: E-commerce retail sales [ECOMSA] dataset. FRED,
Federal Reserve Bank of St. Louis (2018)

23. Wu, C.F.J.: On the convergence properties of the EM algorithm. Annal. Stat. 11(1),
95–103 (1983)

24. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
ArXiv e-prints http://arxiv.org/abs/1409.2329 (2014)

http://arxiv.org/abs/1409.2329

	Determining Adaptive Loss Functions and Algorithms for Predictive Models
	1 Introduction
	2 Datasets
	2.1 Advance Retail Sales
	2.2 E-Commerce Retail Sales

	3 Methodology
	3.1 Autoregressive Model
	3.2 Artificial Neural Network Model
	3.3 Long Short-Term Memory Model
	3.4 Gated Recurrent Unit Model
	3.5 Temporal Convolutional Network Model
	3.6 Gaussian Mixture Model
	3.7 Gaussian Process Regression Model

	4 Results
	4.1 Advance Retail Sales
	4.2 E-Commerce Retail Sales

	A Implementation Details
	References

