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In the setting of finite groups, suppose J acts on N via automorphisms so that the
induced semidirect product N � J acts on some non-empty set Ω, with N acting
transitively. Glauberman proved that if the orders of J and N are coprime, then J
fixes a point in Ω. We consider the non-coprime case and show that if N is abelian
and a Sylow p-subgroup of J fixes a point in Ω for each prime p, then J fixes a point
in Ω. We also show that if N is nilpotent, N � J is supersoluble, and a Sylow
p-subgroup of J fixes a point in Ω for each prime p, then J fixes a point in Ω.
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1. Introduction

Suppose a finite group J acts via automorphisms on a finite group N and the
induced semi-direct product G = N � J acts on some non-empty set Ω where the
action of N is transitive. Glauberman showed that if each supplement H of N in
G splits over N ∩ H and each complement of N in G is conjugate to J , then there
exists a J-invariant element ω ∈ Ω. Consequently, if the orders of J and N are
coprime so that the Schur–Zassenhaus theorem applies, a fixed point always exists
[4, Thm. 4]. In this note, we consider the non-coprime case and establish some
conditions for the existence of a fixed point.

Given an action as described above, consider the stabiliser Gα � G fixing an
arbitrary point α ∈ Ω. As N is transitive, Gα supplements N in G. In this context,
J fixes an element of Ω if and only if the following two conditions are met. Firstly,
we must ensure Gα splits over N ∩ Gα so that there exists some complement J ′.
As G/N ∼= Gα/(N ∩ Gα), it will follow that J ′ also complements N in G. Secondly,
we require that J ′ = g−1Jg for some g ∈ G so that J fixes g · α. For the latter
requirement, we concern ourselves with conditions for two specific complements in
a semidirect product to be conjugate.

To this end, we say two subgroups H and H ′ are locally conjugate in a group G if
for each prime p, a Sylow p-subgroup of H is conjugate to a Sylow p-subgroup of H ′.
Losey and Stonehewer showed that if H and H ′ are locally conjugate supplements
of some normal nilpotent subgroup N in a soluble group G, then H and H ′ are
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conjugate if either G/N is nilpotent or N is abelian [7]. Evans and Shin further
showed that if N is abelian, then G need not be soluble [3].

We first restrict N to be abelian and use a decomposition result from group
cohomology to provide an alternate proof of:

Lemma 1.1 (Evans and Shin). In a finite group, two complements of a normal
abelian subgroup are conjugate if and only if they are locally conjugate.

We use this, along with Gaschütz’s result that a finite group G splits over an
abelian subgroup N if and only if for each prime p, a Sylow p-subgroup S of G
splits over N ∩ S, to show:

Theorem 1.2. Given a finite group J acting via automorphisms on a finite abelian
group N , suppose the induced semidirect product N � J acts on some non-empty
set Ω where the action of N is transitive. If for each prime p, a Sylow p-subgroup
of J fixes an element of Ω, then there exists some J-invariant element ω ∈ Ω.

This had previously been shown using elementary arguments for the special case
that J is supersoluble [2, Cor. 2]. The theorem implies:

Corollary 1.3. Let G be a finite split extension over an abelian subgroup N . If
for each prime p there is a Sylow p-subgroup S of G such that any two complements
of N ∩ S in S are conjugate, then any two complements of N in G are G-conjugate.

This extends a result of D. G. Higman [5, Cor. 2] that requires the complements
of N ∩ S in S to be conjugate within S.

We then consider nilpotent N and supersoluble N � J . We adapt our approach
for lemma 1.1 to nonabelian cohomology and demonstrate:

Lemma 1.4. In a finite supersoluble group, two complements of a normal nilpotent
subgroup are conjugate if and only if they are locally conjugate.

With this, we then show:

Theorem 1.5. Given a finite group J acting via automorphisms on a finite nilpo-
tent group N , suppose the induced semidirect product N � J is supersoluble and acts
on some non-empty set Ω where the action of N is transitive. If for each prime p,
a Sylow p-subgroup of J fixes an element of Ω, then there exists some J-invariant
element ω ∈ Ω.

The theorem also implies an analogue of corollary 1.3 that we state and prove
in § 3.

1.1. Outline

We proceed as follows. In the remainder of this section, we introduce notation
and some conventions from group cohomology. In the next section, we restrict N to
be abelian and prove theorem 1.2. We then restrict N to be nilpotent and N � J
to be supersoluble in § 3 and prove theorem 1.5, before concluding in § 4.
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1.2. Notation and conventions

All groups in this note are assumed finite. A subgroup K � G supplements N � G
if G = NK and complements N if it both supplements N and the intersection
N ∩ K is trivial. We denote conjugation by gγ = γ−1gγ for g, γ ∈ G and otherwise
let groups act from the left. For a prime p, we let Sylp(G) denote the set of Sylow
p-subgroups of a group G.

We rely on rudimentary notions from group cohomology that can be found in the
texts of Brown [1] and Serre [8]. Given a group J acting on a group N via auto-
morphisms, crossed homomorphisms or 1-cocycles are maps ϕ : J → N satisfying
ϕ(jj′) = ϕ(j)ϕ(j′)j−1

for all j, j′ ∈ J . Two such maps ϕ and ϕ′ are cohomologous
if there exists n ∈ N such that ϕ′(j) = n−1ϕ(j)nj−1

for all j ∈ J ; in this case, we
write ϕ ∼ ϕ′. We take the first cohomology H1(J, N) to be the pointed set Z1(J, N)
of crossed homomorphisms modulo this equivalence. The distinguished point corre-
sponds to the equivalence class containing the map taking each element of J to the
identity of N . Our interest in this set stems primarily from the well-known bijec-
tive correspondence [8, Exer. 1 in §I.5.1] between it and the N -conjugacy classes
of complements to N in N � J . Specifically, for each ϕ ∈ Z1(J, N), the subgroup
F (ϕ) = {ϕ(j)j}j∈J complements N in NJ and all such complements may be writ-
ten in this way. Two crossed homomorphisms yield conjugate complements under
F if and only if they are cohomologous, so F induces the desired correspondence.

For a subgroup K � J , we let ϕ|K denote the restriction of ϕ ∈ Z1(J, N) to
K and resJ

K : H1(J, N) → H1(K, N) be the map induced in cohomology. For ϕ ∈
Z1(K, N) and j ∈ J , define ϕj(x) = ϕ(xj−1

)j . We call ϕ J-invariant if resK
K∩Kj ϕ ∼

resKj

K∩Kj ϕj for all j ∈ J and let invJ H1(K, N) denote the set of J-invariant ele-
ments in H1(K, N). For any ϕ ∈ Z1(J, N), we have ϕj(x) = n−1ϕ(x)nx−1

where
n = ϕ(j−1) so that ϕj ∼ ϕ. In particular, resJ

K H1(J, N) ⊆ invJ H1(K, N).

2. N is abelian

In this section, we restrict N to be abelian so that H1(J, N) takes the form of an
abelian group. We first prove lemma 1.1 as stated in § 1.

Proof of lemma 1.1. Suppose we are given locally conjugate complements J and
J ′ of a normal abelian subgroup N in some group G. As any element g ∈ G may
be uniquely written g = jn for j ∈ J and n ∈ N , for each prime p we have J ′

p =
(Jp)n for some Jp ∈ Sylp(J), J ′

p ∈ Sylp(J ′), and n ∈ N . Let ϕ′ ∈ Z1(J, N) denote
the crossed homomorphism corresponding to J ′. It suffices to show that ϕ′ ∼ 1,
where 1 ∈ Z1(J, N) denotes the map taking each element of J to the identity of
N . Through the p-primary decomposition of H1(J, N), we have the isomorphism
[1, §III.10]:

H1(J,N) ∼= ⊕p∈D invJ H1(Jp, N) (2.1)

where D is the set of prime divisors of |J | and the Jp are those given above. For
every p ∈ D, we see that ϕ′|Jp

∼ 1|Jp
as Jp and J ′

p are N -conjugate complements of
N in NJp. Thus, ϕ′ maps to the identity in each direct summand on the right-hand
side of (2.1) and we may conclude ϕ′ ∼ 1 so that J and J ′ are conjugate. �
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We can now use the lemma and Gaschütz’s theorem to prove theorem 1.2.

Proof of theorem 1.2. Given J , N , and Ω as described in the hypotheses of the
theorem, let G = N � J denote the induced semidirect product and consider the
stabiliser subgroup Gα for some fixed α ∈ Ω. As N acts transitively, any g ∈ G may
be written g · α = n · α for some n ∈ N , so that n−1g ∈ Gα. Thus, G = NGα.

We claim Gα splits over N ∩ Gα. For any prime p, there exists by hypothesis
some n ∈ N and P ∈ Sylp(J) such that Pn � Gα. Let L ∈ Sylp(N ∩ Gα). As |Gα| =
|N ∩ Gα| [G : N ], it follows that S = LPn ∈ Sylp(Gα) so Pn complements S ∩ N =
L in S. As the choice of prime p was arbitrary, we may apply Gaschütz’s theorem
to conclude that Gα splits over N ∩ Gα.

Let J ′ complement N ∩ Gα in Gα. As G/N ∼= Gα/(N ∩ Gα), it follows that J ′

also complements N in G. Lemma 1.1 then implies that J ′ = Jg for some g ∈ G so
that J fixes ω = g · α. �

Finally, we outline how corollary 1.3 follows from theorem 1.2.

Proof of corollary 1.2. Given a group G satisfying the hypotheses of the corollary,
suppose J and J ′ each complement N in G. Then G acts on the cosets Ω = G/J ′ in
such a way that we may apply theorem 1.2 to infer that J fixes gJ ′ for some g ∈ G.
Therefore, J and J ′ are conjugate. As the choice of complements was arbitrary, we
may conclude. �

3. N is nilpotent and N � J is supersoluble

In this section, we suppose that N is nilpotent and N � J is supersoluble. Con-
sequently, N decomposes as the direct sum N ∼= ⊕p∈DNp over its characteristic
Sylow p-subgroups Np where D denotes the set of prime divisors of |N |. Direct
calculations show that the natural projections N → Np induce an isomorphism of
pointed sets

H1(J,N) ∼= ⊕p∈DH1(J,Np). (3.1)

To parse the components on the right-hand side of (3.1), we introduce the following:

Proposition 3.1. Suppose a group J acts on a p-group N via automorphisms, so
that the induced semidirect product N � J is supersoluble. Then resJ

Jp
: H1(J, N) →

invJ H1(Jp, N) is an isomorphism for Jp ∈ Sylp(J).

Proof. We induct on the order of J . If J itself is a p-group, the conclusion is
immediate. If p is not a divisor of |J |, the lemma follows from the Schur–Zassenhaus
theorem. Otherwise, let Q � J be a Sylow q-subgroup where q is the largest prime
divisor of |J | [6, Exer. 3B.10] so that J ∼= Q � M for some Hall q′-subgroup M � J .
Consider the inflation–restriction exact sequence [8, §I.5.8],

1 → H1(J/Q,NQ) → H1(J,N)
resJ

Q−−−→ H1(Q,N)J/Q (3.2)

where NQ denotes the elements of N fixed by Q.
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If q �= p, then H1(Q, N) is trivial so that H1(J, N) ∼= H1(M, NQ). In the super-
soluble group NQ, Q is a Sylow q-subgroup for the largest prime divisor of |NQ|,
so that Q � NQ and NQ = N . Consequently, H1(J, N) ∼= H1(M, N). We claim
that resJ

M affords this isomorphism. It suffices to show that resJ
M is surjective. For

any ϕ ∈ Z1(M, N), we may define ϕ̃ : J → N by ϕ̃(qm) = ϕ(m) for q ∈ Q and
m ∈ M . This map is well-defined as J ∼= Q � M . For q, q′ ∈ Q and m, m′ ∈ M ,
we have ϕ̃(qmq′m′) = ϕ(mm′) = ϕ(m)ϕ(m′)m−1

= ϕ̃(qm)ϕ̃(q′m′)(qm)−1
, where the

last equality follows from the fact that elements of N commute with elements of Q.
Thus, ϕ̃ ∈ Z1(J, N). As ϕ̃|M = ϕ, we conclude resJ

M is surjective.
Exchanging M for a conjugate if necessary, we may assume that Jp � M . As

resM
Jp

is injective by induction, it follows that the composition resJ
Jp

= resM
Jp

◦ resJ
M

is also injective. On the other hand,

invJ H1(Jp, N) ⊆ invM H1(Jp, N) = resM
Jp

H1(M,N) ⊆ resJ
Jp

H1(J,N)

where the equality above follows from the inductive hypothesis, so that resJ
Jp

is
surjective.

Otherwise, q = p, so that Jp = Q is a Sylow p-subgroup of J . In this case,
H1(J/Q, NQ) is trivial in (3.2) and so resJ

Jp
is injective. As H1(Q, N)J/Q =

invJ H1(Q, N), it remains to show that this map is surjective. For M -invariant
ϕ ∈ Z1(Jp, N), define ϕ̃ : J → N by ϕ̃(hm) = ϕ(h) for h ∈ Jp and m ∈ M .
Then for any h, h′ ∈ Jp and m, m′ ∈ M , we have ϕ̃(hmh′m′) = ϕ(h(h′)m−1

) =
ϕ(h)ϕ((h′)m−1

)h−1
= ϕ(h)ϕ(h′)m−1h−1

= ϕ̃(hm)ϕ̃(h′m′)(hm)−1
where the third

equality follows from ϕ being M -invariant. As J ∼= Jp � M , we conclude that
ϕ̃ ∈ Z1(J, N). Clearly, resJ

Jp
ϕ̃ ∼ ϕ so that resJ

Jp
is surjective. �

For each prime p, we may apply proposition 3.1 to the component for p
in (3.1) and find that H1(J, Np) ∼= invJ H1(Jp, Np) ∼= invJ H1(Jp, N) for some
Jp ∈ Sylp(J). In particular, it follows that:

Proposition 3.2. Given a group J acting on a nilpotent group N via auto-
morphisms so that N � J is supersoluble, the restriction maps resJ

Jp
induce an

isomorphism of pointed sets H1(J, N) ∼= ⊕p∈D invJ H1(Jp, N) where D denotes
the set of prime divisors of |J | and Jp ∈ Sylp(J) for each p ∈ D.

We are now prepared to provide a proof of lemma 1.4.

Proof of lemma 1.4. In a supersoluble group G, suppose J and J ′ are locally conju-
gate complements of a normal nilpotent subgroup N . As in lemma 1.1, we have for
each prime p that some Jp ∈ Sylp(J) and J ′

p ∈ Sylp(J ′) are conjugate by an element
of N . Let ϕ′ ∈ Z1(J, N) denote the map corresponding to J ′. As the isomorphism
in proposition 3.2 is induced by restriction maps, it takes the identity 1 ∈ H1(J, N)
to ⊕p∈D1|Jp

. Thus, as ϕ′|Jp
∼ 1|Jp

for each p ∈ D, we may apply proposition 3.2
to conclude ϕ′ ∼ 1 so that J and J ′ are conjugate. �

We now use lemma 1.4 to show:

https://doi.org/10.1017/prm.2023.96 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.96


6 M. C. Burkhart

Proposition 3.3. Let H be a subgroup of some supersoluble G ∼= N � J where N
is nilpotent. If for each prime p, H contains a conjugate of some S ∈ Sylp(J), then
H contains a conjugate of J and so splits over N ∩ H.

Proof. The hypotheses imply that H supplements N in G. We induct on the order
of G. If N is trivial or if H is a p-group, the conclusion follows immediately. If
multiple primes divide |N |, then for some prime p, HNp must be a strict subgroup
of G for Np ∈ Sylp(N); otherwise H would contain a Sylow subgroup of G for
each prime and we would have H = G. Let p be such a prime. Induction in G/Np

implies Jg � HNp for some g ∈ G. Switching to a conjugate of H if necessary,
we may assume that g is trivial and apply the inductive hypothesis in HNp to
conclude Jg′ � H for some g′ ∈ G. We now proceed under the assumption that N
is a q-subgroup for some prime q.

Let A � N be a minimal normal subgroup of G; as G is supersoluble, it will have
prime order q. If A � H, then in G/A, induction implies that JgA � HA = H for
some g ∈ G so that Jg � H.

Otherwise, A ∩ H is trivial. Without loss, Jq � H for some Jq ∈ Sylq(J). In G/A,
induction implies that a conjugate of JA/A is contained in HA/A. Let K denote
this conjugate. Switching to a different conjugate if necessary, we may assume
that JqA/A � K. Let ϕ : h 
→ hA/A denote the isomorphism from H to HA/A
and consider K = ϕ−1(K). It follows that Jq � K and |K| = |J | so that K � H
complements N in G. As N is a q-group, a Sylow p-subgroup of J will be conjugate
to a Sylow p-subgroup of K for primes p �= q. Lemma 1.4 then implies that J and
K � H are conjugate in G. �

We now prove theorem 1.5.

Proof of theorem 1.5. Given J , N , and Ω as described in the hypotheses of the
theorem, let G = N � J denote the induced semidirect product and consider Gα

for some α ∈ Ω. As N acts transitively, G = NGα. For each prime p, the hypothe-
ses of the theorem imply (Jp)np � Gα for some Jp ∈ Sylp(J) and np ∈ N , so that
proposition 3.3 implies Gα contains a conjugate of J , say Jg for g ∈ G. It follows
that J fixes ω = g · a. �

This in turn implies:

Corollary 3.4. Let G be a supersoluble split extension over a nilpotent subgroup
N . If for each prime p there is a Sylow p-subgroup S of G such that any two
complements of S ∩ N in S are conjugate, then any two complements of N in G
are conjugate.

Proof. Suppose arbitrary J and J ′ complement N in G. Then G acts on the cosets
Ω = G/J ′ in such a way that we may apply theorem 1.5 to infer that J fixes gJ ′

for some g ∈ G. Consequently, J and J ′ are conjugate, and we may conclude. �

4. Concluding remarks

In their paper, Losey and Stonehewer exhibited a soluble group G ∼= N � J with
N nilpotent and J supersoluble and a second complement J ′ to N in G such that
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J and J ′ are locally conjugate but not conjugate [7]. Thus, lemma 1.4 cannot be
extended to supersoluble complements of a normal nilpotent subgroup in a soluble
group.
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