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Abstract
To minimize the average of a set of log-convex functions, the stochastic New-
ton method iteratively updates its estimate using subsampled versions of the full 
objective’s gradient and Hessian. We contextualize this optimization problem as 
sequential Bayesian inference on a latent state-space model with a discriminatively-
specified observation process. Applying Bayesian filtering then yields a novel opti-
mization algorithm that considers the entire history of gradients and Hessians when 
forming an update. We establish matrix-based conditions under which the effect of 
older observations diminishes over time, in a manner analogous to Polyak’s heavy 
ball momentum. We illustrate various aspects of our approach with an example and 
review other relevant innovations for the stochastic Newton method.

Keywords  Stochastic Newton method · Sequential Bayesian inference · 
Discriminative Bayesian filtering · Momentum in optimization

Mathematics Subject Classification  49M15 · 90C15 · 62M20 · 90C25

1 � Optimization scheme

In machine learning and data science, we often encounter problems of the form:

where each log-convex function gj ∈ C2(ℝd) corresponds to the loss accrued by an 
observation or sample at parameter value � for 1 ≤ j ≤ n . Examples include multiple 
linear regression and maximum likelihood estimation for the exponential family (see 

(1)min
�∈ℝd

�(�) for �(�) =
1

n

∑n

j=1
log gj(�)
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Sect. 6 for details). In this paper, we examine an online learning regime where data 
arrives asynchronously in a stream or n ≫ 1 is sufficiently large that samples must 
be processed in batches.

We consider a sub-sampled Newton method that leverages stochastic estimates 
for both the gradient and Hessian [19]. At each step t ≥ 1 , we begin with the pre-
vious parameter estimate �t−1 , obtain a uniform random sample St ⊂ {1,… , n} , 
and calculate 

 where ∇ log gj = ∇gj∕gj and ∇2 log gj = (gj∇
2gj − ∇gj(∇gj)

⊺)∕g2
j
 denote the gradi-

ent and positive-definite Hessian of log gj , respectively. In this way, we form a step 
direction −Q−1

t
ft using only information available from the current batch St . For 

modern applications, computer hardware limitations often constrain the batch size 
||St

|| to be much less than n.
Given the descent direction −Q−1

t
ft , we perform an Armijo-style [5] backtrack-

ing line search (see Algorithm 1 for particulars) using the function 1

�St�
∑

j∈St
log gj 

to determine a good step size 0 < 𝜆t < 1 prior to updating

Proceeding in this way, each optimization step performs a Newton update on a sub-
sampled surrogate of the true objective.

Given some initialization �0 , this method produces a sequence of estimates 
�1, �2,… that under certain conditions tends towards the solution to problem (1). 
For a precise analysis of this second-order approach to stochastic optimization (in 
the less restrictive setting that the functions gj are convex), see Roosta-Khorasani 
and Mahoney [65] and Bollapragada, Byrd, and Nocedal [13].

Thesis and outline. Exchanging the full objective function for subsampled 
versions of it offers computational and practical benefits, but incurs a cost in 
terms of the reliability of the computed updates. In particular, the sub-sampled 
estimates (2a) and (2b) may prove quite noisy, hindering progress towards the 
optimum. This paper adapts a Bayesian filtering strategy in an attempt to mitigate 
this issue. We begin with a discussion of related work in the next section and then 
introduce discriminative Bayesian filtering in Sect. 3. We recast the optimization 
process described in this section as a discriminative filtering problem in Sect. 4, 
leading to an algorithm that calculates a step direction using the entire history of 
sub-sampled gradients and Hessians. In Sect. 5, we establish technical conditions 
under which the proposed algorithm behaves similarly to Polyak’s momentum. 
In Sect. 6, we compare the standard approach outlined in this section to our pro-
posed, filtered method using an online linear regression problem with synthetic 
data, before drawing conclusions in Sect. 7.

(2a)ft =
1

�St�
∑

j∈St
∇ log gj(�t−1),

(2b)Qt =
1

�St�
∑

j∈St
∇2 log gj(�t−1),

(3)�t = �t−1 − �tQ
−1
t
ft.
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2 � Related work

In this section, we provide a brief overview of related work, separated thematically 
into paragraphs.

Filtering methods have previously been applied to stochastic optimization problems, 
with notable success. Houlsby and Blei [33] characterized online stochastic variational 
inference [31] as a (non-discriminative) filtering problem using the standard Kalman 
filter where the covariance matrix was restricted to be isotropic and demonstrated 
promising results training both latent Dirichlet allocation  [11, 30, 63] and Bayesian 
matrix factorization models  [29]. For least squares problems, Bertsekas  [9] demon-
strated how the extended Kalman filter could be applied to form batch-based updates. 
More recently, Akyıldız [3] and Liu [42] developed filtered versions of the incremental 
proximal method [10]. In a more general setting, Stinis [70] phrased stochastic optimi-
zation as a filtering problem and proposed particle filter-based inference [77, 78].

While momentum and momentum-like approaches have been thoroughly explored 
for stochastic problems in general [14, 24, 35, 62, 66, 67, 69, 71] and for the stochas-
tic Newton method when restricted to solving linear systems  [43], momentum for 
more general cases of stochastic Newton has received comparatively little attention.

As the parameter space becomes high-dimensional, the computational costs for 
inverting the Hessian matrix grow cubically. Hessian Free approaches entirely cir-
cumvent the construction and subsequent inversion of the Hessian [47, 52, 75] by 
directly computing matrix-vector products using the conjugate gradient method or 
the Pearlmutter trick [58]. Berahas, Bollapragada, and Nocedal [7] explore sketch-
ing [1, 44, 55, 56, 59] as an alternative to sub-sampling.

Backtracking line search plays an important role in Roosta-Khorasani and 
Mahoney’s [65] convergence results and inspired the use of line search in this work. 
In contrast to the more traditional stochastic approximation results that stipulate ∑∞

t=1
at = ∞ and 

∑∞

t=1
a2
t
< ∞ where at > 0 are step sizes [64], many variants of sto-

chastic Newton use either line search or fixed step lengths. In the stochastic setting, 
line search remains an area of active research [8, 45, 57, 73].

Other recent innovations for the stochastic Newton method include non-uni-
form  [76] and adaptive sampling strategies  [12, 26] for the batches St , low-rank 
approximation for the sub-sampled Hessians [25], and alternate formulations for the 
inverse Hessian  [2]. Any of these approaches could be applied to the method we 
develop in the remainder of this paper.
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3 � Discriminative Bayesian filtering

Consider a state-space model relating a sequence Z1∶t = Z1, Z2,… , Zt of latent 
random variables to a corresponding sequence of observed measurements 
X1∶t = X1,X2,… ,Xt according to the Bayesian network:

At each successive point t in time, filtering aims to infer the current hidden 
state Zt given all currently available measurements X1∶t . We find that such an esti-
mate often provides more accurate and more stable performance than an estimate 
for Zt given only the most recent measurement Xt . This is expected, as we know 
that conditioning reduces entropy [21, thm 2.6.5] and that the law of total variance1 
implies

where we use �[⋅] and � [⋅] to denote expectation and (co)variance, respectively. In 
particular, conditioning also reduces variance on average.

In Bayesian filtering, inference takes a distributional form. Given a state model 
p(zt|zt−1) that describes the evolution of the latent state and a measurement model 
p(xt|zt) that relates the current observation and current latent state, Bayesian filter-
ing methods iteratively infer or approximate the posterior distribution p(zt|x1∶t) of 
the current latent state given all available measurements at the current point in time. 
To this end, the Chapman–Kolmogorov recursion

relates the current and previous posteriors in terms of the state and measurement 
models, up to a constant depending on the observations alone. The Kalman filter 
provides a quintessential example, where both the state and measurement mod-
els are chosen to be linear and Gaussian [37]. For nonlinear Gaussian models, the 
extended Kalman filter performs linearization prior to applying the standard Kalman 
updates. In general, the integrals required to compute (4) prove intractable. Assumed 
density filters employ variational methods to fit models to a tractable family of dis-
tributions  [34, 40], sigma-point filters such as the unscented Kalman filter apply 

�[� [Zt|X1∶t]] ≤ � [Zt|Xt]

(4)p(zt|x1∶t) ∝ p(xt|zt)∫ p(zt|zt−1)p(zt−1|x1∶t−1) dzt−1

1  The law of total variance states that for random variables Y1 and Y2 defined on the same probability 
space, if � [Y1] < ∞ , then � [Y1] = �[� [Y1|Y2]] + � [�[Y1|Y2]].
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quadrature  [36, 51], and particle filters perform Monte Carlo integration  [27, 28]. 
For comprehensive surveys of Bayesian filtering, consult Chen [20] and Särkkä [68].

In some cases, it may be easier to calculate or approximate p(zt|xt) than the typi-
cal observation model p(xt|zt) . In order to use the conditional distribution of 
latent states given observations for filtering, we may apply Bayes’ rule to find that 
p(xt|zt) ∝ p(zt|xt)∕p(zt) up to a constant in xt and re-write (4) as

We characterize discriminative filtering frameworks as those that exchange a gen-
erative model (in the sense of Ng and Jordan  [54]) for the ability to use p(zt|xt) 
for inference. Well-known examples include maximum entropy Markov models [49] 
and conditional random fields  [41], with applications including natural language 
processing (ibid.), gene prediction  [22, 74], human motion tracking  [38, 72], and 
neural modeling [6, 16].

In this paper, we focus on the Discriminative Kalman Filter (DKF) [17, 18] that 
specifies both the state and discriminative observation models as Gaussian:

where A ∈ ℝ
d×d and Γ ∈ �d parameterize the Kalman state model for the set �d of 

valid d×d covariance matrices, f ∶ X → ℝ
d and Q ∶ X → �d parameterize the dis-

criminative model for an abstract space X  , and �d(⋅;�,Σ) denotes the d-dimensional 
Gaussian density function with mean � ∈ ℝ

d and covariance Σ ∈ �d . With initiali-
zation p(z0) = �d(z0;�, S) where S ∈ �d satisfies S = ASA⊺ + Γ , the unconditioned 
latent process is stationary. The function f here may be non-linear. If the posterior at 
time t − 1,

is approximately Gaussian then it follows from the model (6, 7) and the recursion (5) 
that the posterior at time t,

can also be approximated as Gaussian, where 

 In fact, this approximation is exact when the matrix Q(xt)−1 − S−1 is positive defi-
nite [18, p. 973]; if this fails to be the case, the DKF specifies Σt = (Q(xt)

−1 + R−1
t−1

)−1 

(5)p(zt|x1∶t) ∝
p(zt|xt)
p(zt) ∫ p(zt|zt−1)p(zt−1|x1∶t−1) dzt−1.

(6)p(zt|zt−1) = �d(zt;Azt−1,Γ),

(7)p(zt|xt) = �d(zt; f (xt),Q(xt)),

(8)p(zt−1|x1∶t−1) ≈ �d(zt−1;�t−1,Σt−1),

(9)p(zt|x1∶t) ≈ �d(zt;�t,Σt),

(10a)Rt−1 = AΣt−1A
⊺ + Γ,

(10b)Σt = (Q(xt)
−1 + R−1

t−1
− S−1)−1,

(10c)�t = Σt(Q(xt)
−1f (xt) + R−1

t−1
A�t−1).
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in place of (10b). In this way, closed-form updates for the DKF’s posterior require 
only the inversion and multiplication of d×d matrices, upon evaluation of the func-
tions f and Q.

In Sect.  1, we considered an optimization scheme that iteratively obtains sub-
sampled values for the objective function, its gradient, and Hessian in a small neigh-
borhood around the current parameter value. It then estimates an optimal direction 
of descent given only the current observations and parameter value. In this section, 
we showed how a discriminative Gaussian approximation  (7) can be used with a 
latent state model (6) to consider the entire history of observations when performing 
inference. In the next section, we will apply this discriminative filtering process to 
forming updates for the stochastic Newton method.

4 � Stochastic optimization as a filtering problem

When the batch size ||St
|| is small, the stochastic estimates obtained for the gradient 

(2a) and Hessian (2b) of � may prove to be quite noisy. To remedy this, we now out-
line a filtering method that incorporates multiple batches’ worth of noisy measure-
ment information to inform its estimate for Zt = ∇�(�t−1) . At each step, we let Xt 
denote the current parameter value along with the function, gradient, and Hessian of 
1

�St�
∑

j∈St
log gj obtained from the uniform random sample St in a neighborhood of 

�t−1 . In order to iteratively update our distributional estimate for Zt given all availa-
ble observations using the discriminative Kalman filter (DKF) as described in the 
previous section, we must first specify a discriminative measurement model and 
state model of the required form. After formulating these models, we then describe 
how to use the resulting filtered estimates in our optimization framework.

4.1 � Measurement model

Given some observation xt of the random variable Xt , which in this case corresponds 
to local information for the sub-sampled function 1

�St�
∑

j∈St
log gj in a neighborhood 

of �t−1 , we form a Gaussian approximation for the conditional distribution of Zt as

where the mean ft and covariance Qt refer to (2a) and (2b), respectively. While other 
authors have justified similar Gaussian approximations using the sub-sampled gradi-
ent via the Central Limit Theorem [45, 46], we stress that we expect Qt ≈ ∇2�(�t) in 

(11)p(zt|xt) ≈ �d(zt; ft,Qt)
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the large-sample setting: in particular, we do not intend our covariance estimate Qt 
to tend to zero when d = 1 (or toward singularity when d > 1).2

If the functions gj(�) in (1) are themselves probability density functions, so that we 
seek � that minimizes the observed negative log likelihood

for �1,�2,… ,�n ∼
i.i.d. p�∗ and some underlying distribution p�∗ where �∗ denotes 

the true parameter in a family {p�}�∈Θ of parametrized distributions, then with 
�(�,�) defined analogously to (1) we have

so that ft from (2a) with the functions log gj(�) as specified in (12) is an unbiased 
Monte Carlo estimate for the expected gradient of the objective. Furthermore, the 
Fisher information equality implies

so that for �t−1 near the the optimum �∗ = argmin�{�(�)} , we have

and the sub-sampled Hessian Qt from (2b) under the specification (12) should form a 
reasonable approximation to the variance of the gradient. In this case, the step direc-
tion −Q−1

t
ft takes the form of the natural gradient [4, 48].

4.2 � State model

We want our latent state estimate to evolve continuously, so we specify the state model

for 0 < 𝛼 < 1 and 0 < 𝛽 , and define S =
�

1−�2
Id where Id is the d-dimensional iden-

tity matrix. This autoregressive model with a single lag allows the previous gradient 
estimate to influence the current gradient estimate. In particular, we stipulate a cor-
relation of � between zt(i) and zt−1(i) where z(i) denotes the i-th coordinate of z.

(12)log gj(�) = − log p(�,�j)

(13)
�[ft] = −

1

�St��
�∑

j∈St
∇� log p(�,�j)��=�t−1

�

= − �Ψ∼p�∗
[∇� log p(�,Ψ)��=�t−1] = �Ψ∼p�∗

[∇��(�,Ψ)��=�t−1 ]

(14)
�Ψ∼p�∗

[
∇� log p(�,Ψ)|�=�∗

]
= − �Ψ∼p�∗

[
∇2

�
log p(�,Ψ)|�=�∗

]

=�Ψ∼p�∗

[
∇2

�
�(�,Ψ)|�=�∗

]

(15)�[Qt] ≈ �Ψ∼p�∗
[∇� log p(�,Ψ)|�=�∗ ] = �Ψ∼p�∗

[∇��(�,Ψ)|�=�∗ ]

(16)p(zt|zt−1) ≈ �d(zt; �zt−1, �Id)

2  For mean-zero i.i.d. random vectors Y1,Y2,… ,Y
n
 with finite variance � [Y1] = V ∈ �

d
 , the Central 

Limit Theorem provides conditions under which 
√
nȲ

n
→ N(�,V) in distribution as n → ∞ , where Ȳ

n
 

denotes the mean of Y1,Y2,… ,Y
n
 and N(�,V) is a d-dimensional Gaussian random variable with mean � 

and covariance V. For the unscaled mean Ȳ
n
 , it would follow that each component of � [Ȳ

n
] tends to zero.
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4.3 � Resulting estimates and filtered optimization scheme

We now filter the state-space model described above to obtain iterative estimates for the 
posterior distribution. Starting with the previous approximation for the optimal descent 
direction given all available observations,

we may apply the DKF to recursively approximate the next posterior 
p(zt|x1∶t) ≈ �d(zt;�t,Σt) as Gaussian under (11) and (16), where 

 if Q−1
t

− S−1 is positive definite; otherwise

This recursive approximation inspires a novel optimization scheme similar in nature 
to the standard stochastic Newton method introduced in Sect. 1, where we replace 
the unfiltered estimates ft and Qt with our filtered estimates �t and Σt , respectively, at 
each update step. Given the same problem (1) and initialization, at each step t ≥ 1 , 
we now take the search direction −Σ−1

t
�t . We then perform an Armijo-style back-

tracking line search using 1

�St�
∑

j∈St
log gj . See Algorithm  2 for pseudo-code and 

complete details.
Calculating the posterior p(zt|x1∶t) requires only minimal additional computational 

and storage costs in comparison to the standard stochastic Newton method. We intro-
duce two hyperparameters, � and � , to control the influence of previous observations. 
Intuitively, the impact of previous updates should fade over time as our current esti-
mate moves further away from the parameter values associated with the previously-
subsampled gradients and Hessians. In the next section, we will make this intuition 
more precise by outlining conditions on the hyperparameters under which the impact of 
previous updates decays exponentially.

5 � The connection with momentum

We would like to view our updates as analogous to Polyak’s heavy ball momen-
tum  [61, 67]. In the context of optimization, momentum allows previous update 
directions to influence the current update direction, typically in the form of an expo-
nentially-decaying average. This section explores how our filtered approach to opti-
mization results in momentum-like behavior for the step direction.

To this end, we remark that from (17b) we have the recursion

p(zt−1|x1∶t−1) ≈ �d(zt−1;�t−1,Σt−1),

(17a)Σt = (Q−1
t

+ (�2Σt−1 + �Id)
−1 − S−1)−1,

(17b)�t = Σt(Q
−1
t
ft + (�2Σt−1 + �Id)

−1��t−1),

Σt = (Q−1
t

+ (�2Σt−1 + �Id)
−1)−1.
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so that the current step direction is the sum of the current Newton update and Mt 
times the previous step direction, where we define

for t ≥ 2 . In the standard formulation of momentum, a scalar 0 < m < 1 or diagonal 
matrix commonly takes the place of Mt , so that momentum acts in a coordinate-
wise manner. In contrast, our matrix Mt generally contains off-diagonal elements. 
To view our updates in the context of momentum, we need to establish matrix-based 
conditions for Mt to dampen the impact of previous estimates over time.

For any positive-definite, Hermitian matrix M ∈ ℝ
d×d , let �min(M) and �max(M) 

denote its smallest and largest eigenvalues, respectively. With this notation, 
�(M) = �max(M) corresponds to the spectral norm (as all eigenvalues are posi-
tive), and we have

Proposition 1  Suppose there exist 0 < Λ1 ≤ Λd such that Λ1 ≤ �min(Σt) and 
�max(Σt) ≤ Λd for all t. If 0 < 𝛼 < 1 and 0 < 𝛽 are chosen to satisfy 𝛼Λd < 𝛼2Λ1 + 𝛽 , 
then 𝜌(Mt) < 1 for all t.

Proof  As the spectral norm is sub-multiplicative and �max(M
−1) = 1∕�min(M) for 

positive-definite matrices, we have from (19) that

where Weyl’s inequality [32, thm. 4.3.1] implies

Combining the above two inequalities allows us to deduce

and conclude. 	�  ◻

We may reformulate the recursion (18) with initialization Σ−1
1
�1 = Q−1

1
f1 as

Under the conditions of the proposition, for each i ≥ 1 , we have from (20) that

as t → ∞ , where

(18)Σ−1
t
�t = Q−1

t
ft +MtΣ

−1
t−1

�t−1,

(19)Mt = �(�2Σt−1 + �Id)
−1Σt−1

�(Mt) ≤ � ⋅ �
(
(�2Σt−1 + �Id)

−1
)
⋅ �(Σt−1) ≤ �Λd∕�min(�

2Σt−1 + �Id)

�min(�
2Σt−1 + �Id) ≥ �min(�

2Σt−1) + �min(�Id) ≥ �2Λ1 + �.

(20)𝜌(Mt) ≤ 𝛼Λd

𝛼2Λ1 + 𝛽
< 1

(21)Σ−1
t
�t =

∑t

i=1

�∏t

k=i+1
Mk

�
Q−1

i
fi.

�(
∏t

k=i+1
Mk) ≤ ∏t

k=i+1
�(Mk) ≤ � �Λd

�2Λ1+�

�t−i
→ 0
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so that the impact of older updates exponentially decays over time, as one would 
expect from momentum.

We also note that, if 0 < Λ1 ≤ Λd exist, then 0 < 𝛼 < 1 and 0 < 𝛽 may always 
be chosen to satisfy 𝛼Λd < 𝛼2Λ1 + 𝛽 . For example, we may let � = 1∕2 and 
� = Λd.

6 � Illustrated example: online linear regression

In this section, we compare the filtered method as described in Algorithm 2 to the 
standard, unfiltered method as described in Sect. 1 on a simple optimization problem 
of the form (1) that we now describe.

In maximum likelihood estimation, minimizing the negative log-likelihood for a 
set of i.i.d. samples from a log-concave distribution produces an average of func-
tions, each convex in the parameter of interest. We consider the problem of estimat-
ing a vector of coefficients for a discriminative linear regression model; i.e. given 
data yj ∈ ℝ and xj ∈ ℝ

d , 1 ≤ j ≤ n , we suppose

where � ∈ ℝ
d denotes a column vector of parameters. We aim to minimize the nega-

tive log likelihood, which can be written up to a multiplicative constant as

���
�∏t

k=i+1
Mk

�
Q−1

i
fi
���2 ≤ �

�∏t

k=i+1
Mk

����Q
−1
i
fi
���2

(22)p�(y1,… yn�x1,… , xn) =
∏n

j=1
�(yj;�

⊺xj, 1),
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so that ∇ log gj(�) = (xjx
⊺

j
)� − xjyj and ∇2 log gj(�) = xjx

⊺

j
.

6.1 � Methodology

We performed a computer simulation with n = 100 and d = 2 . For 1 ≤ j ≤ n , we 
sampled xj ∼

i.i.d. N
(
( 00 ), (

1.0 0.1
0.1 1.0 )

)
 and �j ∼i.i.d. N(1, 1) , where N(m,V) denotes 

a Gaussian random variable with mean m and covariance V. We set yj = �⊺xj + �j 
for each j. In this way, the conditional distribution of the yi respects  (22), and the 
minimizer of (23) corresponds to the maximum likelihood estimate (MLE) for the 
parameter � . Due to our choice of small n, the true optimum �∗ = argmin� �(�) can 
be calculated exactly and used to help evaluate performance. In practical applica-
tions of stochastic Newton, we would generally expect n to be much larger.

For the purposes of comparison, we ran 1000 independent paired trials starting 
from the same initialization. The trials performed 30 optimization steps for each 
method. Within each trial, the two methods received the same 5 indices St , sampled 
uniformly at random with replacement from {1,… , n} at each step. These methods 
then garnered gradient and Hessian information from the same subsampled func-
tion at their respective current parameter values to form each subsequent update. We 
selected � = 0.9 and � = 0.2 for the filtered algorithm, but note that we generally 
expect these parameters to be problem-dependent.

We performed our comparisons on a 2020 MacBook Pro (Apple M1 Chip; 16 
GB LPDDR4 Memory) using Python (v.3.10.2) and its Numpy package (v.1.22.3). 
We include code to reproduce the results and figures that follow as part of our sup-
plementary material.

6.2 � Results

We plot the evolution of three randomly selected paths for both methods in Fig. 1 
and present a graphical summary of the aggregate results of 1000 independent tri-
als in Fig. 2. We note that the filtered method tends to reach a neighborhood of the 
optimum in around 10 steps, while the unfiltered method commonly takes 30 steps 
or more (see Fig. 2a).

Prior to reaching a neighborhood of the optimum (where, according to Fig. 2b 
the function � seems to flatten out), the filtered estimates appear to be smoother 
than those of the unfiltered estimates (see Fig. 1). We make this observation more 
numerically precise by considering the signed angular difference (in radians) 
between the optimal descent direction and the calculated step direction before 
and after the filtering process. We record the mean square of this angular error 
(MSE) in Table 1 for the crucial first few iterations, where both methods are taking 
their largest steps, and find that filtering helps to reduce MSE appreciably. As the 
squared bias tends to be small ( ≤ 0.010 for both methods over the first 5 steps), we 

(23)𝓁(�) =
1

n

∑n

j=1
log gj(�), where log gj(�) = (yj − �⊺xj)

2∕2
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see a corresponding reduction in the variance of the error as well.3 As discussed 
in Sect. 3, this reduction in error was one of the original motivations for applying 
filtering.

We note that filtering allows paths to accelerate early on in their trajectory (see 
Fig. 2c) and reach a neighborhood of the optimum well before the unfiltered method 
(see Fig. 2a). Additionally, we monitored �(Mt) , as discussed in the previous sec-
tion, and found that for t > 5 , 𝜌(Mt) < 0.8 for all 1000 trajectories. Consequently, we 
observe the exponential decay of the coefficients for each Q−1

i
fi as written in (21).

6.3 � Exponential families and generalized linear models

We now consider how this section’s linear regression example may be generalized. 
To this end, we introduce the exponential family [23, 39, 60], consisting of probabil-
ity distributions of the form

(24)p(x��) = h(x) exp(⟨�, T(x)⟩ − A(�))

(a) (b) (c)

Fig. 1   We plot three trajectories for the unfiltered and filtered methods (acting on the same samples) 
starting from the grey dot, and heading towards the global optimum (the red triangle) for the full objec-
tive function � in (1)

(a) (b) (c)

Fig. 2   Upon sampling 1000 trajectories for both the filtered and unfiltered method starting with the same 
initialization and receiving the same randomness, we plot the average values ± 2 standard deviations 
for a the Euclidean distance between the estimate and optimum, b the value of the entire (non-sampled) 
function � at the current estimate, and c the distance between the current and previous estimate, all ver-
sus the step number

3  For an estimator 𝜃̂ of a random variable � , the mean square error decomposes as 
�|𝜃 − 𝜃̂|2 = Bias(𝜃̂)2 + � [𝜃̂] where Bias(𝜃̂) = �𝜃[𝜃̂] − 𝜃.
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for x ∈ ℝ
� , natural parameter � ∈ ℝ

d , sufficient statistic T ∶ ℝ
�
→ ℝ

d , log-normal-
izer A ∶ ℝ

d
→ ℝ , and non-negative h ∶ ℝ

�
→ ℝ . (Note that our notation differs 

from that of most texts: authors typically let � denote the natural parameter, but we 
use � to maintain the notation from previous sections.) Given i.i.d. samples x1,… , xn 
from such a distribution, the MLE for � can be characterized as a solution to  (1) 
using the negative log likelihood, where

with

and

In particular, at each optimization step, the gradient and Hessian of each gj(�t−1) will 
always be the expectation and variance, respectively, of T(Y) − T(xj) where Y ∼ p�t−1.

Generalized linear models [53] with canonical response functions model condi-
tional distributions using the exponential family. For yj ∈ ℝ and xj ∈ ℝ

d , 1 ≤ i ≤ n , 
and � ∈ ℝ

d we write

so that the MLE for � again solves (1) with

Applying the chain rule to  (25) and  (26) then yields 
∇� log gj(�) = xj(�[T(Y)|xj, �] − T(yj)) and ∇2

�
log gj(�) = (xjx

⊺

j
)�Y∼p�

[T(Y)] . Thus, 
our algorithm may readily be applied to find the MLE for models of the above form, 
with a slight perturbation to the Hessian to ensure positive definiteness.

For a more standard presentation using the overdispersed exponential family, see 
McCullagh and Nelder [50].

log gj(�) ∶= − log p(xj��) = A(�) − log h(xj) − ⟨�, T(xj)⟩

(25)∇ log gj(�) = ∇�A(�) − T(xj) = �Y∼p�
[T(Y)] − T(xj)

(26)∇2
�
log gj(�) = ∇2

�
A(�) = �Y∼p�

[T(Y)].

(27)p(yj�xj, �) = h(yj) exp(⟨�j, T(yj)⟩ − A(�j)), where �j = �⊺xj,

(28)log gj(�) ∶= − log p(yj�xj, �) = A(�⊺xj) − log h(yj) − ⟨�⊺xj, T(yj)⟩.

Table 1   We report the mean square angular error (over the 1000 trials) for both methods during the first 
5 steps. Here, the unfiltered step direction is taken to be −Q−1

t
f
t
 for f

t
 and Q

t
 evaluated at the current fil-

tered estimate. As both methods implement line search to select step length, we believe angular error (in 
radians) may prove more pertinent to successful optimization than other, magnitude-influenced distances. 
Note that both estimates coincide at step 1

step 1 2 3 4 5

MSE unfiltered 0.041 0.050 0.081 0.178 0.408
MSE filtered 0.041 0.043 0.060 0.093 0.231
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7 � Conclusions and future directions of research

The stochastic Newton algorithm uses subsampled gradients and Hessians to itera-
tively approximate an optimal step direction for batch-based optimization. When the 
batch size is small, the errors of these subsampled estimates may hinder progress 
towards the minimum. In this work, we applied a Bayesian filtering method with a 
discriminative observation model to filter the sequences of gradients and Hessians. 
We established conditions for the resulting optimization algorithm to behave simi-
larly to Polyak’s momentum, allowing the impact of older updates to fade over time. 
We illustrated how our method improves performance on a simple example and dis-
cussed how the algorithm can be applied more generally to inference for the expo-
nential family.

In the future, we would like to consider possible solutions to two main draw-
backs of our approach as currently formulated. In many practical applications, the 
high dimensionality of the parameter � causes maintaining and inverting the Hessian 
matrix to be prohibitively expensive. Hessian free methods and the large body of 
research on quasi-Newton methods [15] may offer some help here. Secondly, from a 
theoretical perspective, our method would benefit from algorithm termination con-
ditions and associated convergence results. The results of Roosta-Khorasani and 
Mahoney [65, thm. 4] and Bollapragada, Byrd, and Nocedal [13, thm. 2.2] are most 
germane to our work, but further modifications would be necessary.

We believe that stochastic optimization provides a natural setting for sequential 
Bayesian inference and anticipate further advances in this direction.
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