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Intracortical brain computer interfaces can enable individuals with paral-
ysis to control external devices through voluntarily modulated brain ac-
tivity. Decoding quality has been previously shown to degrade with
signal nonstationarities—specifically, the changes in the statistics of the
data between training and testing data sets. This includes changes to the
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Robust Intracortical BCI Cursor Control 2987

neural tuning profiles and baseline shifts in firing rates of recorded neu-
rons, as well as nonphysiological noise. While progress has been made
toward providing long-term user control via decoder recalibration, rela-
tively little work has been dedicated to making the decoding algorithm
more resilient to signal nonstationarities. Here, we describe how princi-
pled kernel selection with gaussian process regression can be used within
a Bayesian filtering framework to mitigate the effects of commonly en-
countered nonstationarities. Given a supervised training set of (neural
features, intention to move in a direction)-pairs, we use gaussian pro-
cess regression to predict the intention given the neural data. We apply
kernel embedding for each neural feature with the standard radial ba-
sis function. The multiple kernels are then summed together across each
neural dimension, which allows the kernel to effectively ignore large
differences that occur only in a single feature. The summed kernel is
used for real-time predictions of the posterior mean and variance under a
gaussian process framework. The predictions are then filtered using the
discriminative Kalman filter to produce an estimate of the neural inten-
tion given the history of neural data. We refer to the multiple kernel ap-
proach combined with the discriminative Kalman filter as the MK-DKF.
We found that the MK-DKF decoder was more resilient to nonstationar-
ities frequently encountered in-real world settings yet provided similar
performance to the currently used Kalman decoder. These results demon-
strate a method by which neural decoding can be made more resistant to
nonstationarities.

1 Introduction

Brain-computer Interfaces (BCIs) use neural information recorded from the
brain for the voluntary control of external devices (Wolpaw, Birbaumer, Mc-
Farland, Pfurtscheller, & Vaughan, 2002; Hochberg et al., 2006; Schwartz,
Cui, Weber, & Moran, 2006; Lebedev & Nicolelis, 2006, 2017; Fetz, 2007;
Chestek et al., 2009; Carmena, 2013; Chhatbar & Francis, 2013). At the
heart of BCI systems is the decoder: the algorithm that maps neural infor-
mation to a signal used to control external devices. Modern intracortical
BCI decoders used by people with paralysis infer a relationship between
neural features (e.g., neuronal firing rates) and the motor intentions from
training data. Hence, high-quality control of an external effector, such as
a computer cursor, is predicated on appropriate selection of a decoding
algorithm.

Decoder selection for intracortical BCI (iBCI) systems traditionally has
been based on extensive study of cortical physiology. In what are now clas-
sic experiments, nonhuman primates were taught to move a planar ma-
nipulandum to one of eight different directions (Georgopoulos, Kalaska,
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2988 D. Brandman et al.

Caminiti, & Massey, 1982). The firing rate as a direction of arm movement
was parsimoniously modeled as a sinusoidal curve. For each neuron, the
vector corresponding to the maximum firing rate (i.e., the phase offset of
a cosine function with a period of 360 degrees) is often referred to as the
neuron’s “preferred direction.” The population vector algorithm scales the
preferred directions of the recorded neurons by their recorded firing rate;
the sum is the decoded vector of the intended direction of neural control
(Taylor, Tillery, & Schwartz, 2002; Jarosiewicz et al., 2008; Velliste, Perel,
Spalding, Whitford, & Schwartz, 2008). Given sufficient diversity in pre-
ferred directions, the problem reduces to linear regression: decoding in-
volves learning the least-squares solution to the surface mapping firing
rates to kinematic variables (Kass, Ventura, & Brown, 2005). Alternative de-
coding approaches include modeling the probability of observing a neu-
ral spike as a draw from a time-varying Poisson process (Truccolo, Friehs,
Donoghue, & Hochberg, 2008; Brown, Barbieri, Ventura, Kass, & Frank,
2002; Ba, Temereanca, & Brown, 2014; Shanechi et al., 2017), using support-
vector regression (Shpigelman, Lalazar, & Vaadia, 2008) or neural networks
(Sussillo, Stavisky, Kao, Ryu, & Shenoy, 2016).

An ongoing area of research in iBCI systems is to ensure robust control
for the user. Degradation in neural control is often attributed to nonstation-
arities in the recorded signals, which are mismatches in the statistics of the
neural signals between training and testing models. These include changes
to neural tuning profiles, baseline shifts in firing rates, and nonphysiolog-
ical noise. With linear models, nonstationarities have been shown to de-
grade decoding performance (Jarosiewicz et al., 2015; Perge et al., 2013).
The most common approach to addressing this mismatch is to recalibrate
the decoder’s parameters by incorporating more recent neural data. This
has been described using batch-based updates with user-defined breaks
(Jarosiewicz et al., 2015; Bacher et al., 2015; Gilja et al., 2015), batch-based
updates during ongoing use (Orsborn et al., 2014; Shpigelman et al., 2008),
and continuous updating during ongoing use (Shanechi, Orsborn, & Car-
mena, 2016; Dangi, Gowda, Heliot, & Carmena, 2011). Ongoing decoder
recalibration traditionally requires information regarding the cursor’s cur-
rent location and a known target; alternatively, retrospective target infer-
ence has been described as a way to label neural data with the BCI user’s
intended movement directions based on selections during self-directed on-
screen keyboard use (Jarosiewicz et al., 2015).

While attempts to mitigate nonstationarities have largely focused on re-
calibration, few efforts have aimed to make the decoder inherently more
resilient to nonstationarities. To our knowledge, the most extensive study
of examining decoder robustness investigated the use of deep neural net-
works trained from large amounts of offline data (Sussillo et al., 2016).
While effective for decoding, this method requires tremendous computa-
tional data and resources and required the decoder to be specifically trained
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to handle nonstationarities using extensive regularization. Other authors
have used Bayesian parameter updates for addressing nonstationarities
(Li, O’Doherty, Lebedev, & Nicolelis, 2011), or adaptive mean corrections
(Homer et al., 2014).

Here, we demonstrate a new decoding algorithm that is more resilient
to signal nonstationarities than the currently used linear decoding models.
Our approach builds on the previously well-established linear state-space
dynamical model for neural decoding. Building on prior work with gaus-
sian process regression (Brandman et al., 2018), the key innovation is mak-
ing a nonlinear decoder robust to noise through kernel selection and data
sparsification. Using both offline simulations and online demonstrations
with an iBCI user with paralysis, we demonstrate that our new decoding
approach is more resilient to nonstationarities than the standard Kalman
filter currently being used in people.

2 Mathematical Methods

We have previously described closed-loop decoding using gaussian pro-
cess regression in detail (Brandman et al., 2018). Briefly, during calibration,
(xi, zi) pairs, representing pairs of neural features and user intention vec-
tors, are collected. We model the neural features as the firing rates and the
total power in the bandpass-filtered signal (see section 3.3) and intentions as
the unit vector to target (see section 3.4). To perform closed-loop decoding,
we compute f (xt ), the unfiltered estimate of the user’s intention to control
the computer cursor at time t (see section 2.2). We then filter f (xt ) using the
discriminative Kalman filter (see section 2.1), which provides an estimate
of the decoded velocity while incorporating the history of neural features.

Our previous approach to decoding with gaussian process regression
used the entire high-dimensional neural data set as the basis for comput-
ing the measure of similarity between xt and xi (Brandman et al., 2018). In
this letter, we made two important changes to the decoder to increase its
robustness to signal nonstationarities. First, we adopted a kernel that cal-
culated the similarity between two neural vectors as the arithmetic average
over similarities in each neuron, as opposed to the product that was used
by the more standard isotropic gaussian kernel (see section 2.2). This had
the effect of limiting the impact any single neuron could have on the calcu-
lated similarity between two vectors of neural features. When a nonstation-
arity occurred in a feature, the decoder “disregarded” this feature without
compromising decoding quality. Second, we sparsified the data by averag-
ing (xi, zi) pairs into octants. This dramatically decreased the computational
load for real-time decoding. We found that the observed neural features had
noise events with surprising frequency (see section 3.1). Averaging across
octants had the effect of mitigating the importance of these noisy features
for decoding.
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2.1 Description of Decoding Method. In this section, we use the con-
vention that random variables are capital letters and their values are low-
ercase. For instance, Zt has pdf p(zt ). We also emphasize that the i and t
subscripts refer to the training and testing data sets, respectively. We model
the hidden state-space model with states Z1, . . . , ZT ∈ R

d representing the
intended cursor velocity, and the observed states X1, . . . , XT ∈ R

m repre-
senting the neural features related through the following graphic model:

Z1 −→ · · · −→ Zt−1 −→ Zt −→ · · · −→ ZT

↓ ↓ ↓ ↓
X1 Xt−1 Xt XT

In typical use, d = 2 (e.g., kinematic computer cursor control), while m = 40
neural features (Jarosiewicz et al., 2013, 2015; Bacher et al., 2015; Brand-
man et al., 2018). We are interested in the posterior distribution p(zt |x1:t ),
being the current hidden state given all observations up to the present.
Upon specifying the state model p(zt |zt−1) that relates how the hidden state
changes over time and the measurement model p(xt |zt ) that relates the hid-
den and observed variables, the posterior can be found recursively using
the Chapman–Kolmogorov equation,

p(zt |x1:t ) ∝ p(xt |zt )
∫

p(zt |zt−1) p(zt−1|x1:t−1) dzt−1, (2.1)

where ∝ means proportional as a function of zt . The standard Kalman filter
is obtained when both the state and measurement models are specified as
linear with gaussian noise (Wu et al., 2005; Simeral, Kim, Black, Donoghue,
& Hochberg, 2011). Here, we use a stationary linear state model with gaus-
sian noise

p(z0) = ηd(z0; 0, S), (2.2a)

p(zt |zt−1) = ηd(zt; Azt−1, �), (2.2b)

where A, S, � are d×d, S and � are proper covariance matrices, S = ASAᵀ +
�, and ηd(z;μ,�) denotes the d-dimensional multivariate normal density
with mean μ and covariance � evaluated at a point z. We approximate the
measurement model using Bayes’ rule,

p(xt |zt ) ∝ p(zt |xt )
p(zt )

≈ ηd(zt; f (xt ), Q)
ηd(zt; 0, S)

, (2.3)

where f : Rm → R
d is a nonlinear function learned from training data and

Q is a d×d covariance matrix. The posterior is then given recursively by
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p(zt |x1:t ) ≈ ηd(zt;μt, �t ), (2.4)

where μ1 = f (x1), �1 = Q, and for t ≥ 2,

Mt−1 = A�t−1Aᵀ + �,

�t = (Q−1 + M−1
t−1 − S−1)−1,

μt = �t (Q−1 f (xt ) + M−1
t−1Aμt−1). (2.5)

In this way, we allow the relationship between Xt and Zt to be nonlin-
ear through the function f , while retaining fast, closed-form updates for
the posterior. While f can be learned from supervised training data us-
ing a number of off-the-shelf discriminative methods (Burkhart, Brandman,
Vargas-Irwin, & Harrison, 2016), in this letter, we take f to be the posterior
mean from a gaussian process regression and set Q as the covariance of the
training data set. We call the resulting filter the discriminative Kalman filter
(DKF; Burkhart et al., 2016; Brandman et al., 2018).

2.2 Kernel Selection for Robustness. As part of decoder calibration,
we collect a data set consisting of neural features and intended velocities,
which we refer to as {(xi, zi)}1≤i≤n. These are assumed to be samples from
the graphical model and are used to train a gaussian process regression
for p(zt |xt ). The gaussian process model takes asymmetric, positive-definite
kernel Kθ (·, ·) with hyperparameters θ and predicts the mean inferred ve-
locity f (xt ) as

f (xt ) = kᵀ∗ (Kθ + σ 2
n In)−1z, (2.6)

where Kθ is the n × n matrix given component-wise by Kθ i j = Kθ (xi, x j ), σ 2
n

is a noise parameter for the training data, In is the n-dimensional identity
matrix, kᵀ∗ is a 1×n vector of the embedding of the training and testing data,
and z is an n×1 vector of the direction vectors of a single dimension. We can
reexpress equation 2.6 as a linear combination (see Rasmussen & Williams,
2006 for details):

f (xt ) =
n∑

i=1

αiKθ (xi, xt ), (2.7)

where α = (Kθ + σ 2
n In)−1z so that αi is a smoothed version of zi. This demon-

strates how the kernel-determined similarity between xi and xt directly de-
termines the impact of the training point (xi, zi) on the prediction f (xt ).

In designing a kernel for robust decoding, we select a kernel that ig-
nores large differences between xi and xt that occur along a relatively few
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2992 D. Brandman et al.

number of dimensions. This would potentially make the filter resilient to
erratic firing patterns in an arbitrary single neuron.

We use a multiple kernel (MK) approach (Gönen & Alpaydin, 2011) and
take

Kθ (x, y) = 1
m

σ 2
f

m∑
d=1

η1(xd − yd; 0, σ 2
� ), (2.8)

where θ = (σ 2
f , σ

2
� ) are hyperparameters and xd denotes the dth dimen-

sion of x. The similarity between inputs x and y is given as the average
over the similarities in each dimension, where all dimensions are equally
informative.

To illustrate our choice of kernel, it is helpful to compare it against
the more standard isotropic squared exponential kernel, where the sum in
equation 2.8 is replaced by a product, as follows:

K̃θ̃ (x, y) = σ̃ 2
f

m∏
d=1

η1(xd − yd; 0, σ̃ 2
� ). (2.9)

On identical inputs x = y, the K̃θ̃ and Kθ both return their maximum value of
σ 2

f , indicating that x and y are similar. If, holding all other dimensions equal,
the absolute difference |xi − yi| grows large (this would occur if readings
from a single neuron became very noisy or unreliable), the standard ker-
nel K̃θ̃ would become arbitrarily small, while the multiple kernel Kθ would
never fall below m−1

m σ 2
f . Thus, the multiple kernel continues to identify two

neural vectors as close if they differ along only a single arbitrary dimen-
sion (see Figure 1 shows a visualization in two dimensions). Note that as
m increases beyond two, this difference between the kernels becomes even
more pronounced.

In contrast to data augmentation methods (An, 1996; Sussillo et al., 2016),
we do not need to handle dropping neuron i and dropping neuron j sepa-
rately. Altering our model to accommodate more or different nonstationar-
ities would amount to a simple change in kernel and not result in increased
training time.

2.3 Training Set Sparsification for Robustness. Training data were
gathered during a standard radial center-out task during which the user at-
tempted to move the cursor to one of eight equally spaced targets arranged
on a circle. We took the (xi, zi) pairs and averaged the neural data over each
of the eight targets. The training set used for gaussian process prediction
consisted of these eight (xi, zi) pairs. Besides making prediction much faster,
we found that using this sparsified training set also increased decoder ro-
bustness (see sections 4.1 and 4.2).
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Figure 1: Schematic demonstrating the effect of kernel selection on the mea-
sure of similarity for two-dimensional neural features. Since kernel similarity
between two points depends on only their coordinate-wise differences, we let
p1 = (0, 0) be a point at the origin and consider the kernel-determined similar-
ity between p1 and a second point p2 = (x, y). For each plot, the color at (x, y)
represents the measure of similarity according to the selected kernel K̃θ̃ (p1, p2).
Traveling along the red line illustrates the effect of increasing the difference in
measurements for a single neuron. For the RBF kernel (A), moving along the ar-
row results in the kernel becoming arbitrarily small. By contrast, the MK kernel
(B) never falls below half of the value at the origin as it moves along the arrow.
For 40 dimensions, the MK kernel would never fall below 39/40 of its maximal
value. Hence, when the RBF kernel is used for closed-loop decoding, nonsta-
tionarities from a single neural feature would result in no similarity between
the current neural feature and any of the training data. By contrast, the MK ker-
nel will remain relatively unaffected by even a drastic change in a single neuron
and continue to effectively use the information from the remaining neurons.

3 Experimental Methods

3.1 Permissions. The Institutional Review Boards of Brown University,
Partners Health/Massachusetts General Hospital, and the Providence VA
Medical Center, as well as the U.S. Food and Drug Administration, granted
permission for this study (Investigational Device Exemption). The partici-
pants for this study were enrolled in a pilot clinical trial of the Brain-Gate
Neural Interface System.1

3.2 The Participant. At the time of the study, T10 was a 35-year-old man
with a C4 AIS-A spinal cord injury. He underwent surgical placement of

1
ClinicalTrials.gov Identifier: NCT00912041. Caution: Investigational device. Limited

by federal law to investigational use.
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two 96-channel intracortical silicon microelectrode arrays (Maynard, Nord-
hausen, & Normann, 1997) as previously described (Simeral, Kim, Black,
Donoghue, & Hochberg, 2011; Kim, Simeral, Hochberg, Donoghue, & Black,
2008). Electrodes were placed into the dominant precentral gyrus and dom-
inant caudal middle frontal gyrus. Closed-loop recording data were used
from trial (postimplant) days 259, 265, 272, and 300.

3.3 Signal Acquisition. Raw neural signals for each electrode were
sampled at 30 kHz using the NeuroPort System (Blackrock Microsystems,
Salt Lake City, UT) and then processed using the xPC target real-time op-
erating system (Mathworks, Natick, MA). Raw signals were downsampled
to 15 kHz for decoding, and then denoised by subtracting an instantaneous
common average reference (Jarosiewicz et al., 2015; Gilja et al., 2015) us-
ing 40 of the 96 channels on each array with the lowest root-mean-square
value. The denoised signals were bandpass-filtered between 250 Hz and
5000 Hz using an eighth-order noncausal Butterworth filter (Masse et al.,
2015). Spike events were triggered by crossing a threshold set at 3.5× the
root-mean-square amplitude of each channel, as determined by data from
a 1-minute reference block at the start of each research session. The follow-
ing neural features were extracted: the rate of threshold crossings (not spike
sorted) on each channel and the total power in the bandpass-filtered signal
(Jarosiewicz et al., 2013, 2015; Bacher et al., 2015; Brandman et al., 2018). A
total of m = 40 features were selected. Neural features were binned in 20 ms
nonoverlapping increments.

3.4 Decoder Calibration. Task cueing was performed using custom-
built software running Matlab (Mathworks, Natick, MA). The participants
used standard LCD monitors placed at 55 to 60 cm, at a comfortable angle
and orientation. T10 engaged in the radial-8 task as previously described
(Jarosiewicz et al., 2013, 2015; Bacher et al., 2015; Brandman et al., 2018) (see
Figure 2A). Briefly, targets (size = 2.4 cm, visual angle = 2.5◦) were pre-
sented sequentially in a pseudo-random order, alternating between one of
eight radially distributed targets and a center target (radial target distance
from center = 12.1 cm, visual angle = 12.6◦). Successful target acquisition
required the user to place the cursor (size = 1.5 cm, visual angle = 1.6◦)
within the target’s diameter for 300 ms, before a predetermined time-out
(5 seconds). Target time-outs resulted in the cursor moving directly to the
intended target, with immediate presentation of the next target.

Each calibration block lasted 3 minutes. During calibration, decoder pa-
rameters were updated every 2 to 5 seconds as previously described (Brand-
man et al., 2018). During the initial stages of calibration, we assisted cursor
performance by attenuating the component of the decoded velocity per-
pendicular to the target (Jarosiewicz et al., 2013; Velliste et al., 2008). This
automated assistance was gradually decreased until it was removed 100 to
130 seconds after the start of calibration. The coefficients for the MK-DKF
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Robust Intracortical BCI Cursor Control 2995

Figure 2: (A) Radial-8 task. Eight targets are presented on the screen (blue cir-
cle). T10 was instructed to move the cursor (white circle) to the goal (red cir-
cle). Targets were acquired when the cursor overlapped the target for 300 ms.
(B) Grid task. Square targets were arranged in a grid. T10 was instructed to move
the cursor (white circle) to the target (green square). A target was acquired when
T10 held the cursor within any square for 1 second. Note that unlike the radial-8
task, incorrect targets were scored.

decoder were computed with the calibration block used for the Kalman
decoder.

3.5 Noise Injection Experiment. Once the decoder was calibrated, we
sought to investigate the impact of nonstationarities to the MK-DKF and
Kalman decoders. Our approach was to have T10 perform the radial-8 task
while randomly injecting noise to a single feature and also randomly select-
ing the decoder currently being used (see Figure 2A).

Each trial ended after either the target was acquired by having the cur-
sor hold within the target for 300 ms or a 5 second time-out. At the start
of every noise injection trial, the cursor was recentered over the previously
presented target, and the velocity was reset to zero (this ensured that any
potential impact of the cursor’s behavior from the previous trial was re-
moved). We performed block randomization of the six experimental condi-
tions: combining one of two decoders (Kalman and MK-DKF) with one of
three noise levels (no noise, one z-score, five z-scores). Both the researchers
and T10 were blinded to which decoder–noise combination was currently
being used. To simulate noise, we provided a z-score offset to the channel
with the highest signal-to-noise ratio (Malik et al., 2015), based on the value
computed from the calibration block. We standardized the 40 features and
the noise-injected feature for both the MK-DKF and Kalman decoders. Ex-
periments were performed in 4 minute blocks.

In order to ensure that T10 was blinded to the decoder and noise combi-
nation, we ensured that the kinematic feel of the decoders was similar. That
is, we sought to match the mean speed, smoothing, and innovation terms
for the two decoders, since these parameters are known to have an impact
on decoding quality (Willett et al., 2017). For the radial-8 noise-injection ex-
periment, we matched kinematic parameters in two ways. First, we set the
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2996 D. Brandman et al.

A and � of equation 2.5 to match the Kalman values. Second, to ensure that
both decoders moved at the same speed, we first computed the mean speed
values for Kz in the training block, where K is the Kalman gain matrix. Next,
we computed the mean speed value of f (xt ) and then linearly scaled f (xt )
to match the mean Kz value.

Hence, in performing head-to-head comparisons, we opted to match the
kinematics of the MK-DKF decoder to the Kalman. We note that it is very
likely that we were having a negative impact on the MK-DKF decoder per-
formance by doing so, since the parameters used were likely suboptimal
compared to those that would have been computed.

3.6 Performance Measurement. We quantified performance using a
grid task after locking decoder parameters (Brandman et al., 2018; Pandar-
inath et al., 2017; Nuyujukian, Fan, Kao, Ryu, & Shenoy, 2015) (see Figure
2B). This task consisted of a grid of 36 square targets arranged in a square
grid, where the length of one side of the square grid was 24.2 cm (visual
angle = 24.8◦). One of targets was presented at a time in a pseudorandom
order. Targets were acquired when the cursor was within the area of the
square for 1 second. Incorrect selections occurred if the cursor dwelled on
a nontarget square for an entire hold period. Each comparison block was 3
minutes in length.

We measured the achieved bit rate (BR), which measures the effective
throughput of the system (Nuyujukian et al., 2015),

BR = log2(N − 1) max(Sc − Si, 0)
t

,

where N is the number of possible selections; Sc and Si are the number of
correctly and incorrectly selected targets, respectively; and t is the elapsed
time within the block.

3.7 Offline Analysis. We retrospectively analyzed data collected from
previous research sessions. We restricted our analysis to sessions where T10
moved a computer cursor using motor imagery. He acquired targets using
the radial-8 task, the grid task, or free typing tasks (Jarosiewicz et al., 2015).

3.7.1 Injecting Noise for the MK-DKF and Kalman Decoders. To investigate
the impact of noise on decoder performance, we performed offline simu-
lations of both the Kalman and MK-DKF decoders. We computed the an-
gular error between the predicted decoder value without filtering (i.e., the
Kz term and the f (xt ) terms of the Kalman and MK-DKF decoders, respec-
tively) and the label modeled as the vector from cursor to target (Simeral
et al., 2011; Brandman et al., 2018). Data from a single research session were
concatenated together. A decoder was trained using half of the data avail-
able for a session without replacement and then used to predict the mean
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angular error for the other half of the data set. Decoder predictions were
bootstrapped 100 times.

3.7.2 Offline Assessment of Noise. Our standard practice is to normalize
real-time neural features using the mean and the standard deviation of the
previous block’s worth of data; this is done to mitigate the effect of signal
nonstationarities (Jarosiewicz et al., 2015). We also use m = 40 features, se-
lected according to a signal-to-noise ratio (Malik et al., 2015).

As part of the offline analysis, for each session, we incrementally cali-
brated Kalman decoders in chronological order of recorded blocks. We then
computed the number of times a feature exceeded a z-score offset in the next
block. For instance, to compute the number of noise events at two z-scores
for trial day 295, block 5, we computed the z-score mean and standard de-
viations based on data for blocks 1 to 4 and then counted the number of
20 ms blocks with deviations more than two z-scores away from the mean
for each feature.

4 Results

4.1 Offline Analysis: Quantifying the Effect of Noise on Closed-Loop
Neural Decoding. We investigated the impact of noise injection for both
the Kalman and MK-DKF decoders by performing offline simulations of
previously collected data. There were 124 research sessions recorded from
participant T10. We identified 96 sessions and a total of 48.2 hours of closed-
loop neural control of a computer cursor, during which many variations of
neural decoders had been explored. For each of the 96 sessions, we boot-
strapped the data 100 times into nonoverlapping training and testing sets
(50-50 splits), and then used the training data set to compute the coefficients
for both the Kalman and MK-DKF decoders. We measured decoder perfor-
mance using the predicted angular error between the simulated decoded
direction and the known vector from cursor to target (see section 3.7.1).

Our implementation of the Kalman decoder for closed-loop neural con-
trol (Jarosiewicz et al., 2015; Bacher et al., 2015; Brandman et al., 2018) uses
a measure of signal-to-noise to subselect 40 of the 384 features to be used in
closed-loop decoding (Malik et al., 2015). We added noise to the single fea-
ture with the highest signal-to-noise ratio in the testing data set (see Figure
3A). With the Kalman decoder, we found a nearly linear relationship be-
tween the amount of injected noise and the percent change in angular error
(R2 = 0.994, p < 10−24). We then repeated this experiment using the same
features for both calibration and noise injection with the MK-DKF decoder.
We found that noise injection had only minimal changes to the MK-DKF
performance despite large noise injection values.

Given the detrimental effect of z-score offsets on decoding performance,
a straightforward solution would be to simply saturate the features used
for decoding. That is, all values greater than a saturation value (e.g., two
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Figure 3: (A) Change in angular error as a function of z-score offset for the
Kalman filter, the Kalman filter with feature saturation, and MK-DKF decoders.
We identified 96 research sessions where T10 performed closed-loop neural con-
trol. For each session, we performed a 50-50 split of the data and used the
training data to compute the coefficients for the decoders; then we predicted
the angular error on the testing data. Next, we added a z-score offset to a sin-
gle channel (standardized for each decoder). The shaded areas represent the
standard error of measurement for each decoder. (B) Change in angular error
as a function of feature thresholding. During the bootstrapping procedure, we
saturated features for both the training and testing data sets and computed
the change in angular error compared to no saturation. The shaded area repre-
sents the standard error of measurement. (C) Examining the frequency of noise
events. For each of the bootstrapped simulations, we counted the frequency
at which each feature was incorporated into the decoder (m = 40), as well as
the frequency at which the feature was observed to deviate by more than two
z-scores.

z-scores) would be set to the saturation value. We computed the change in
angular error as a function of feature saturation threshold (see Figure 3B).
We found that the angular error decreased as saturation levels increased,
reaching the base performance at two z-scores. These results suggested that
features could be saturated at two z-scores without a negative impact on
decoding performance.
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Next, we quantified the frequency at which two z-score noise events oc-
curred. Across all features, the two z-score deviations occurred 5.6% ±1.2
(SD) of observed 20 ms bins (see Figure 3C). Importantly, the same features
that had large noise events were those that were highly informative and
incorporated into the Kalman filter according to the feature’s SNR (Ma-
lik et al., 2015). Since real-time neural decoding is commonly performed
in 20 ms bins, these results suggest that apparent noise events are observed
roughly three times per second with our current clinical research-grade neu-
ral recording setup.

Intuitively, the data sparsification used with the MK-DKF decoder
should result in lower performance with the Kalman filter. Sparsification
of the linear data set would result in the regression variance being greatly
underestimated, and hence result in lower offline decoding performance.
To quantify the effect of sparsification with the Kalman, we averaged the
training data into octants and computed performance using mean angular
error. For 95 of the 96 experimental sessions, sparsifying the data resulted in
a statistically significant increase in mean angular error (paired t-test with
Bonferonni correction, p < 0.05), with an overall mean increase of 16% ± 2
(SD).

Taken together, these results suggest that (1) the Kalman decoder is
highly sensitive to z-score offsets, even arising from a single feature;
(2) z-score offsets that degrade decoding performance for the Kalman oc-
cur approximately three times per second; and (3) principled thresholding
of features will alleviate some of the effects of z-score offsets. These results
also suggest that the MK-DKF is relatively insensitive to z-score offsets for
single features.

4.2 Online Analysis: Closed-Loop Assessment of Both the Kalman
and MK-DKF Decoders. We characterized the effect that noise events had
on closed-loop neural decoding with T10 (see Figure 4A, supplementary
movie 1 online). At the start of the research session, we first calibrated both
the Kalman and MK-DKF decoders and then matched their kinematic coef-
ficients and the subset of features used for decoding (see section 3.5). Next,
we performed a double-blinded randomization procedure where both the
decoder and the amount of noise injected were randomly selected every
two targets. Neither T10 nor the researchers were aware of the current de-
coder/noise combination. Noise was injected by offsetting the z-score of a
single feature, standardized for both decoders (see section 3.5).

T10 was presented with 596 targets in a center-out task over three re-
search sessions (trial days 259, 265, and 272). For the Kalman decoder, there
was a statistically significant dose-dependent response between the amount
of injected noise (no noise, one z-score offset, and five z-score offsets) and the
percentage of targets acquired within a 5 second time-out (χ2, p < 10−37).
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Figure 4: (A) Percentage of targets acquired during closed-loop cursor control
by T10 in the radial-8 task. On research days 259, 265, 272, and 300, T10 ac-
quired targets wherein the decoder (Kalman and MK-DKF) and the amount of
noise (no noise, one z-score, five z-scores) were randomly selected. There was
no statistically significant difference in performance across the noise injection
trials for the MK-DKF decoder (χ 2, p = 0.81) There was a statistically signifi-
cant difference across conditions for the Kalman decoder (χ2, p < 10−37). To en-
sure that T10 could not distinguish between which decoder was being used, the
kinematic parameters of the MK-DKF matched to the Kalman decoder. (B) Per-
formance of both the MK-DKF and Kalman decoders with optimal kinematic
parameters. There was no statistically significant difference in bit rate between
the two decoders (trial days 272 and 300, Wilcoxon rank-sum test p = 0.48).

By contrast, there was no statistically significant difference between the
three noise conditions with the MK-DKF decoder (χ2, p = 0.81).

We note that in this comparison, the percentage of targets acquired by
the MK-DKF decoder was inferior to that of the Kalman decoder without in-
jected noise (see Figure 4A). In order to have performed this comparison, we
matched the kinematic coefficients of the MK-DKF to the Kalman decoder
(see section 3.5). This ensured that the “feel” of the decoders was indistin-
guishable, allowing us to perform the randomized experiment. However,
in so doing, we were likely selecting suboptimal kinematic coefficients for
the decoder.

To quantify the performance of both decoders without injected noise and
with optimal kinematic parameters, we calibrated the Kalman and MK-
DKF decoders using their respective optimal kinematic coefficients. After
decoder calibration, T10 acquired targets in the grid task, and the decoder
being used was alternated every block (see Figure 4B). There was no statis-
tically significant difference in bit rate between the two decoders (trial days
272 and 300, N = 12 blocks, Wilcoxon rank-sum test p = 0.48).
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5 Discussion

A new neural decoder based on gaussian process regression (MK-DKF) was
more resilient to noise than the traditionally used linear decoding strategy
used for closed-loop neural control. When z-score offsets were added to
single channels in the Kalman filter, the decoding performance degraded;
this was not seen with the MK-DKF decoding approach. After optimizing
the parameterizations of both decoders, the communication bit rate was not
statistically different.

5.1 Addressing Nonstationarities in Neural Data. Robust and reliable
control with an intracortical brain-computer interface is predicated on the
properties of the decoding algorithm selected to map high-dimensional
neural features to low-dimensional commands used to control external
effectors. End-effector control degrades without recalibration of decoder
parameters (Jarosiewicz et al., 2015; Perge et al., 2013). To this end, mul-
tiple solutions have been proposed to recalibrate decoders based on closed-
loop neural data during use, either when targets are known (Hochberg
et al., 2006, 2012; Kim et al., 2008; Jarosiewicz et al., 2013; Collinger et al.,
2013; Wodlinger et al., 2015; Gilja et al., 2015; Orsborn et al., 2014; Shanechi
et al., 2017; Dangi et al., 2011; Carmena, 2013) or retrospectively inferred
(Jarosiewicz et al., 2015). Other approaches have investigated BCI decoder
robustness using a wide variety of specific methods, including adapting a
discriminative Bayesian filter (Brandman et al., 2018), refitting a Kalman
filter (Gilja et al., 2012; Dangi, Orsborn, Moorman, & Carmena, 2013),
Bayesian updating for an unscented Kalman filter (Li et al., 2011), reweight-
ing a naive Bayes classifier (Bishop et al., 2014), retraining a kernelized
ARMA model (Shpigelman et al., 2008), and reinforcement learning (Mah-
moudi, Pohlmeyer, Prins, Geng, & Sanchez, 2013; Pohlmeyer, Mahmoudi,
Geng, Prins, & Sanchez, 2014), among others.

Rather than adapting the coefficients of the decoder given new closed-
loop data, the goal of robust model selection is to design the decoder to
be more resilient to nonstationarities. One previously described decoder
achieved robustness with a multiplicative recursive neural network and
augmenting the training data with perturbations that mimicked the desired
nonstationities against which they wished to train (Sussillo et al., 2016). For
example, in order to train against dropping the ith neuron, exemplars were
added to the training data set where the ith neuron had been zeroed out.
This technique of augmenting a training set with noisy data is well estab-
lished for increasing generalization performance in neural networks and
is commonly referred to as data augmentation (An, 1996). It requires gen-
erating and training over new artificial data for each individual targeted
nonstationarity for each feature. Hence, exemplars generated to protect the
decoder against dropping the ith feature do not protect against dropping
the jth feature.
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While effective, there are limitations in applying data augmentation for
closed-loop BCI systems for human users. First, one of the goals of pur-
suing iBCI research for people is to develop devices that are intuitive and
easy to use, with minimal technician oversight, and require minimal cali-
bration time. It would not be possible to apply a deep neural network with
a bagging technique in the case where the user is using the system with
limited available data, such as using the system for the first time (Brand-
man et al., 2018). Second, the system requires significant computational
resources. Bagging enlarges an already massive data set by orders of mag-
nitude, entailing a commensurate increase in training burden for the neural
network. At least with today’s available hardware and the requirement for
local computation, the increase in computational resources would not be
possible for portable iBCI systems to be used inside homes. By contrast, the
MK-DKF decoder did not require explicit training to acquire robustness.
The robust kernel design was able to distinguish between signal and noise
within 3 minutes of calibration.

We note that one straightforward approach to decoder robustness with
a linear decoding strategy such as the Kalman filter would be to saturate
features. We found that saturating the neural features beyond two z-scores
did not have a negative impact on offline decoder performance (see Figure
3B), making the decoder resistant to large feature deviations (see Figure 3A).
The MK-DKF decoder did not require explicit training or setting a signal
saturation threshold to acquire robustness. The robust kernel design was
able to distinguish between signal and noise within 3 minutes of calibration.

While a z-score offset to the Kalman would be predicted to result in a
degradation in performance, it was not known a priori the extent to which
a user would be able to compensate for the bias that would develop during
closed-loop performance. We have previously described how closed-loop
cursor control degrades with a baseline shift in firing rate of a neuron, re-
sulting in a cursor bias (Perge et al., 2013), and described strategies that
may be used to enhance control for the user (Jarosiewicz et al., 2015). Our
results quantified the effect of signal degradation as a function of z-score
offset. We did not observe a noise-dependent degradation of the MK-DKF
decoder and demonstrated its resistance compared to the Kalman filter.

5.2 Experimental Design. To our knowledge, our methodological ap-
proach to comparing decoders by randomly interleaving decoders in real
time has not been described in the human iBCI literature. There are two
alternative research designs that we could have taken. First, we could
have tested the Kalman on one day and the MK-DKF on the next. How-
ever, the experience of multiple iBCI groups (Jarosiewicz et al., 2015;
Collinger et al., 2013; Bouton et al., 2016) suggests that decoder performance
may change dramatically from day to day. Hence, this approach would
need a large number of research sessions to demonstrate changes in de-
coder performance that could not be better explained by signal interday
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nonstationarities. We opted not to take this approach in the interest of de-
creasing the amount of session time where the user was deliberately pre-
sented with a decoder that would “break” periodically from noise injection.

Second, we could have calibrated a decoder and then immediately tested
it (Kalman), and then switched decoders and repeated the procedure (MK-
DKF). Indeed, this block-by-block approach has already been described in
examining the neural decoding using gaussian process regression (Brand-
man et al., 2018). However, T10 had previously told us that trying to use a
decoder when it “wasn’t working properly” was “hard work.” In fact, he
would stop trying to control the cursor when he thought it was not work-
ing well as he was already aware that “we could do better.” Given that we
were deliberately causing the decoder not to work properly by noise injec-
tion, it was important for us not to design an experiment where T10 would
simply give up if he knew which decoder was currently being used. Hence,
blinding T10 to the decoder became critical.

We note that the goal of this experiment was to compare two differ-
ent decoding algorithms with a similar linear state-space decoding setup.
However, the kinematic parameters used in linear state-space-models have
a substantial effect on decoding performance (Willett et al., 2017). Hence, in
order to isolate exactly the effect of the decoder, we needed to ensure that
all of the relevant variables of kinematic parameters were controlled. We
designed an experiment where T10, as well as the researchers in the room,
would be blinded to the decoder and the amount of injected noise.

5.3 Growth Directions for MK-DKF. Our implementation of the MK-
DKF decoder provides an exciting foundation from which to explore de-
coder robustness. For instance, our approach naively provided a uniformly
weighted linear addition of multiple kernels, thereby making the explicit
assumption that each feature is equally important for decoding. One ap-
proach would be to incorporate techniques in kernel learning (Gönen &
Alpaydin, 2011). For instance, one could learn a convex sum of weights for
the linear combination of kernels that “align” to a training kernel (Cortes,
Mohri, & Rostamizadeh, 2012). Alternatively, one could be explore alterna-
tive distance metrics. For instance, rather than using Euclidean distances
between features, one could apply a spike train distance metric (Victor
& Purpura, 1997). This metric can be adapted as a valid kernel embed-
ding function and used for decoding neural data (Park, Seth, Paiva, Li,
& Principe, 2013; Brockmeier et al., 2014; Li, Brockmeier, Choi, Francis,
Sanchez, & Principe, 2014). It has also been shown to perform better than
Euclidean distances when visualizing complex neuronal data sets (Vargas-
Irwin, Brandman, Zimmermann, Donoghue, & Black, 2015).

6 Conclusion

BCIs have the potential improve the quality of life for people with paraly-
sis. Here we present experimental evidence that a decoder using gaussian
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process regression is robust to nonstationarities in neural signals compared
to the previously used Kalman filter.
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