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Abstract
Objective. Brain–computer interfaces (BCIs) can enable individuals with tetraplegia to 
communicate and control external devices. Though much progress has been made in 
improving the speed and robustness of neural control provided by intracortical BCIs, little 
research has been devoted to minimizing the amount of time spent on decoder calibration. 
Approach. We investigated the amount of time users needed to calibrate decoders and achieve 
performance saturation using two markedly different decoding algorithms: the steady-state 
Kalman filter, and a novel technique using Gaussian process regression (GP-DKF). Main 
results. Three people with tetraplegia gained rapid closed-loop neural cursor control and 
peak, plateaued decoder performance within 3 min of initializing calibration. We also show 
that a BCI-naïve user (T5) was able to rapidly attain closed-loop neural cursor control with 
the GP-DKF using self-selected movement imagery on his first-ever day of closed-loop BCI 
use, acquiring a target 37 s after initiating calibration. Significance. These results demonstrate 
the potential for an intracortical BCI to be used immediately after deployment by people with 
paralysis, without the need for user learning or extensive system calibration.

Keywords: brain–computer interfaces, neural decoding, Kalman filtering, Gaussian process 
regression, discriminative Kalman filter

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

Brain–computer interfaces (BCIs) use neural information 
recorded from the brain for the voluntary control of external 
devices [1–10]. Motor imagery or intention can be decoded 
using intracortical BCI (iBCI) systems, allowing people with 
paralysis to control computer cursors [11–18], robotic limbs 
[13, 19–22] and functional electrical stimulation systems [23, 
24]. Though much progress has recently been made in further 
improving the speed and robustness of iBCIs in people with 
tetraplegia resulting from spinal cord injury (SCI), amyo-
tropic sclerosis (ALS), and stroke [16–18], little research has 
been devoted to minimizing the amount of time it takes a user 
to gain adequate neural control.

Two approaches have been described to calibrate decoders 
for motor imagery-based BCIs [25]. The first approach 
has been to have the users adapt their behavior to a fixed 
BCI decoder, based on feedback (often visual). While this 
approach leads to BCI-based control [26–35], the process 
of developing reliable control requires days to weeks. The 
second approach has been to adapt the decoder to the user, 
wherein decoder parameters are computed during an explicit 
calibration process [3, 11–17, 19, 21, 22, 36–42]. As part of 
this calibration process, a baseline statistical model provides 
the user with initial closed-loop control; we refer to this 

as decoder seeding. Several methods of seeding have been 
described that are relevant to users with mobility impair-
ments. First, decoder parameters can be seeded with random 
or arbitrary values [37, 43, 44]. Second, in EEG-BCI systems, 
decoders can be seeded based on large databases of exemplar 
signals collected from multiple individuals [45–48]. Third, 
and most commonly applied with human research partici-
pants, decoders can be seeded from open-loop imagery [11–
13, 15–21, 43, 44, 49–52], where users imagine or attempt 
movements for several minutes, after which their intentions 
are inferred without real-time external feedback.

In order to provide users with closed-loop control, iBCI 
decoders are calibrated by modeling a relationship between 
neural features (e.g. neuronal firing rates) and motor inten-
tions that are inferred from training data (e.g. vectors from 
the instantaneous cursor position to the target position) [41]. 
Often, decoder calibration relies on seeding decoders during 
an open-loop imagery task in which users are asked to attempt, 
or imagine, controlling a preprogrammed cursor that auto-
matically moves to presented targets [11–18, 20, 21, 24]. The 
resulting mapping from neural data to movement intention is 
then used to provide users with closed-loop neural control. 
Since the tuning of neurons during open-loop imagery does not 
generalize perfectly to closed-loop contexts [15, 37, 53–55], 
parameters are typically re-computed using closed-loop data 
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[15, 17, 43, 44, 49, 50, 56]. Once users are provided with initial 
closed-loop control, iBCI systems can continue to adapt based 
on closed-loop data. Adaptation during ongoing use optimizes 
the quality of control during extended use [9, 15, 16, 25, 43, 
44, 49, 50, 57, 58] given signal nonstationarities [16, 59]. 
Strategies for updating decoders during ongoing use include 
re-computing model parameters continuously [44, 56–58] or in 
short batches on the timescale of minutes [43, 49, 50].

There are several reasons why the current approach to 
decoder calibration should be shortened and streamlined. First, 
some iBCI users will have diseases such as ALS or brainstem 
stroke, which may impair their ability to remain alert and 
engaged long enough to participate in prolonged calibration 
sequences. Second, by rapidly providing users with feedback 
that the device is working (i.e. by obviating the requirement 
for an explicit open-loop imagery task), one could anticipate 
greatly increased user engagement and decreased time required 
for developing adequate neural control [43, 44, 60, 61]. Third, 
in the current stage of research, where iBCI devices in humans 
require percutaneous connections, there is limited time avail-
able for data collection during research sessions. A reduction 
of calibration times on the order of minutes would dramatically 
streamline data collection, with further time savings gained 
across days. Finally, the immediate and intuitive calibration of 
a BCI decoder would make it possible in the future for a patient 
who has become acutely locked-in due to brainstem stroke to 
be provided with an immediately useful BCI.

Here, we demonstrate rapid calibration of iBCIs that allows 
users to achieve closed-loop neural control without an explicit 
open-loop imagery step [11–18, 20, 21, 24] (figure 1). Three 
iBCI users with paralysis developed accurate neural closed-loop 
cursor control with performance plateauing in under 3 min. We 
found that this approach could be used for two different decoding 
algorithms. Finally, a BCI-naïve individual with tetraplegia (par-
ticipant T5) was able to gain continuous, unassisted, 2D closed-
loop cursor control when using an iBCI system for the first time.

2. Methods

2.1. Permissions

The Institutional Review Boards of Brown University, 
Case Western Reserve University, Partners HealthCare/
Massachusetts General Hospital, Providence VA Medical 
Center, and Stanford Medical Center, as well as the US Food 
and Drug Administration granted permission for this study 
(Investigational Device Exemption). The participants in this 
study were enrolled in a pilot clinical trial of the BrainGate 
Neural Interface System (ClinicalTrials.gov Identifier: 
NCT00912041). (Caution: Investigational device. Limited by 
federal law to investigational use.)

2.2. Participants

The three participants in the study were: T5, a 63 year-old 
right-handed male with C4 AIS-C SCI; T8, a 55 year-old 
right-handed male with C4 AIS-A SCI; and, T10, a 34 year-old 
right-handed male with C4 AIS-A SCI. All three participants 
underwent surgical placement of two 96-channel intracortical 
silicon microelectrode arrays [62] (1.5 mm electrode length, 
Blackrock Microsystems, Salt Lake City, UT) as previously 
described [11, 12]. In T5 and T8, both arrays were placed in 
the dominant precentral gyrus. In T10, one array was placed in 
the dominant precentral gyrus and a second was placed in the 
dominant caudal middle frontal gyrus. Data were used from 
trial (post-implant) days: 30 and 33 (T5); 660, 662, 665, 927, 
and 928 (T8); and 84, 112, 187, 188, 194, 195, 203, 215, 216, 
236, 355, and 361 (T10).

2.3. Signal acquisition

Raw neural signals for each channel (electrode) were sampled at 
30 kHz using the NeuroPort System (Blackrock Microsystems, 

Figure 1. Schematic representation of a typical human iBCI calibration protocol versus the rapid calibration sequence. Each black arrow 
represents a step where a technician currently intervenes. Hexagonal and rounded steps refer to offline and online steps, respectively. The 
BCI user does not actively participate in offline steps. Red, yellow and green steps refer to the setup, calibration, and use of the BCI system, 
respectively. Top. Typical use of an intracortical BCI system has several steps. First, the user is connected to the BCI and the software 
is initialized. The user then performs open-loop imagery; decoders are seeded using this initial data; and then closed-loop calibration 
proceeds, and may be repeated several times depending on the protocol being used. Bottom. No explicit open-loop imagery step is 
required, and the decoder calibration steps occur without the need for technician oversight or intervention.
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Salt Lake City, UT). Further signal processing and neural 
decoding were performed using the xPC target real-time oper-
ating system (Mathworks, Natick, MA). Raw signals were 
downsampled to 15 kHz for decoding, and de-noised by sub-
tracting an instantaneous common average reference [16, 17] 
using 40 of the 96 channels on each array with the lowest root-
mean-square value (selected based on their baseline activity 
during a 1 min reference block run at the start of each session). 
The de-noised signal was band-pass filtered between 250 Hz 
and 5000 Hz using an 8th order non-causal Butterworth filter 
[63]. Spike events were triggered by crossing a threshold set 
at 3.5  ×  the root-mean-square amplitude of each channel, as 
determined by data from the reference block. The neural fea-
tures used were: (1) the rate of threshold crossings (not spike 
sorted) on each channel, and (2) the total power in the band-
pass filtered signal [14–16]. Neural features were binned in 
20 ms non-overlapping increments for decoding with T5 and 
T10. For T8, the 20 ms bins were causally smoothed over 60 ms.

For closed loop decoding, the neural features, z, were split 
between threshold crossings and the band power filtered signal 
[14–16]. We used the top 40 features ranked by signal-to-noise-
ratio of neural modulation [64]. For all three participants, 35% 
(±3%) of the features selected were threshold crossings, and 
65% (±3%) were band power. The number of features that 
were tuned for closed-loop neural cursor control was computed 
for each participant. A feature was considered tuned if there 
was a statistically significant relationship between the feature 
and the direction of movement grouped by octants (ANOVA, 
p  <  0.001). The average fraction of features that were tuned 
for directional movement was 0.64 (T5, range: 0.53–0.70); 
0.36 (T8, range: 0.17–0.51); and, 0.58 (T10, range: 0.23–0.84).

2.4. Calibration task

Task cueing was performed using custom built software 
running Matlab (Natick, MA). The participants used stan-
dard LCD monitors placed 55–60 cm distance from the par-
ticipant, at a comfortable angle and orientation. Participants 
engaged in the Radial-8 Task as previously described [12, 
16]. Briefly, targets (size  =  2.4 cm, visual angle  =  2.5°) were 
presented sequentially in a pseudo-random order, alternating 
between one of eight radially distributed targets and a center 
target (radial target distance from center  =  12.1 cm, visual 
angle  =  12.6°). Successful target acquisition required the 
user to place the cursor (size  =  1.5 cm, visual angle  =  1.6°) 
within the target’s diameter for 300 ms, before a pre-deter-
mined timeout. Target timeouts resulted in the cursor moving 
directly to the intended target, with immediate presentation 
of the next target. During the first 60 s of calibration with T8, 
we attenuated 80% of the component of the decoded vector 
perpend icular to the vector between the cursor and the target 
[15, 39]. No error attenuation was used for T5 or T10.

2.5. Calibration procedure

2.5.1. Previous approaches to iBCI decoder calibration.  
Prior to the procedure described in this report, decoder 

calibration was a multi-step process requiring active interven-
tion from a trained technician. We have previously reported 
two approaches. The first [17, 18] used: (i) initial BCI setup, 
(ii) 5 min of open-loop motor imagery, (iii) a technician super-
vised decoder calibration stage, (iv) 5 min of closed-loop con-
trol, and finally, (v) a second supervised decoder calibration 
(figure 1). Our team has also implemented protocols for initial 
decoder calibration wherein users performed 2 min of open-
loop imagined movements, followed by a series of batch-
based calibration sequences over 6 min [12] or 9 min [15, 
16] of gradually decreasing computer assistance [15, 16, 39]. 
Thus, our standard approach to calibration has been to seed 
decoders with open-loop imagery, and then to perform batch-
based decoder updates, taking approximately 8–11 min of 
actual calibration time (excluding the additional time required 
for manual intervention by the technician between calibration 
epochs—approximately 0.5–1 min between blocks).

We sought to accelerate calibration with three modifica-
tions to our standard approach. First, we removed the explicit 
open loop calibration step. Second, rather than performing 
batch-based calibration every 2–5 min, we updated decoder 
parameters every 2–5 s throughout the calibration phase. 
Third, we automated the remaining calibration steps normally 
performed by a technician.

We note that our new approach to calibration performs three 
processes simultaneously, which we briefly list here and then 
describe in detail in later sections. First, the decoding algo-
rithm performs real-time predictions of the intended velocity 
based on the neural features, providing users with closed-loop 
neural control (section 2.6). Second, during calibration, data 
consisting of (yt, zt) pairs are collected, where yt is the 2  ×  1 
unit vector pointing from the cursor’s current position to the 
known target [14–16], and zt is the corresponding 40  ×  1 
vector of neural features. Third, the (yt, zt) pairs are used to 
update the parameters used by the decoding algorithm every 
2–5 s (section 2.7).

At the start of the session, the decoder parameters are ini-
tialized to values that leave the cursor stationary regardless 
of the neural features. Nevertheless, training data can be col-
lected since the user has been instructed to attempt to move 
the cursor to the target on the screen. After the first parameter 
update (2–5 s after the start of the session), the decoder began 
using neural features to provide users with closed loop neural 
control, although the user had poor control, as expected. As 
the calibration task continued, the decoder parameters were 
re-computed (based on growing amounts of training data, 
every 2–5 s) and the quality of control improved. At the end of 
the calibration the parameters were locked before assessment 
with the Grid Task (see below).

2.6. Decoders: basic models and algorithms

We tested our calibration procedure with two different 
decoding algorithms: the steady-state Kalman filter, and a 
novel technique combining Gaussian process regression with 
the discriminative Kalman filter (GP-DKF), described below. 
Both decoders are Bayesian sequential filters. Let xt denote 
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the hidden state at time step t, namely, the unobserved 2  ×  1 
vector of intended velocity of the cursor, and let zt denote the 
observation at time step t, namely, the 40  ×  1 vector of neural 
features (sections 2.3 and 2.5). In section 2.7 we discuss the 
distinction between xt and yt. The initial probability distribu-
tion function (PDF) of intended velocity at time 0 is denoted 
p(x0), the conditional PDF of intended velocity at time t given 
the intended velocity at time t  −  1 is denoted p(xt|xt−1), and 
the conditional PDF of neural features at time t given the 
intended velocity at time t is denoted p(zt|xt). The conditional 
PDFs p(xt|xt−1) and p(zt|xt) model, respectively, the temporal 
dynamics of intended velocity and the instantaneous mapping 
from intended velocity to neural features. Bayesian sequential 
filters use these PDFs and the history of observed neural fea-
tures (z1,…,zt) in order to compute the conditional PDF of the 
intended velocity given the complete history of observed data:

p (xt|z1, . . . , zt) .

Both decoding algorithms used the mean of this conditional 
PDF as the prediction of the unknown intended velocity at 
time step t. This prediction was used to update the cursor 
position.

The two decoding algorithms are derived under differing 
assumptions for the observation model, p(zt|xt), but they share 
the same model for intended velocity:

p (x0) = η (x0|0, W0)

p(xt|xt−1) = η(xt|Axt−1, W)

where η(x|µ, Σ) denotes the multivariate Gaussian PDF with 
mean vector µ and covariance matrix Σ evaluated at x. This 
is the model for the hidden states underlying the well-known 
Kalman filter [11, 65, 66]. W and W0 are 2  ×  2 covariance 
matrices and A is a 2  ×  2 matrix. The parameters A, W, W0 
were fixed at values that have historically worked well for 
closed-loop neural control [14–16]. Both A and W noticeably 
affect the dynamics of cursor control. Loosely speaking, A 
controls the smoothness of cursor dynamics, whereas W con-
trols the extent to which decoded neural features are used to 
drive cursor control.

2.6.1. Kalman filter. The first decoder uses the linear, Gauss-
ian observation model

p (zt|xt) = η (zt|Hxt, Q) ,

where Q is a 40  ×  40 covariance matrix and H is a 40  ×  2 
matrix relating intended velocity to brain activity. The param-
eters H and Q were learned from the training data collected 
during the calibration procedure (sections 2.5 and 2.7). The 
classical Kalman-update equations  use the observed neural 
features as well as A, W, W0, H, and Q, in order to compute the 
mean of p(xt|z1,…,zt), used for closed-loop neural control [11, 
65, 66]. The version of the algorithm that we used is based 
on the steady-state update Kalman equation [14–16] and uses 
real-time bias correction [16, 19]. During closed-loop calibra-
tion, the parameters H and Q were updated every 2–5 s. We 
do not go back to time step 0 and repeat the entire Kalman 
filtering algorithm with the updated parameters.

2.6.2. Discriminative Kalman filter (DKF). In contrast to the 
standard Kalman filter, the DKF places no constraints on 
the observation model: it may be nonlinear and non-Gauss-
ian. Although relaxing this Gaussian assumption may better 
model the non-Gaussian features of neural data, it introduces 
two fundamental difficulties. First, the standard filtering algo-
rithms become computationally intensive (unlike the fast 
Kalman-update equations). Second, learning a generic obser-
vation model from training data is much more complicated 
than learning the parameters H and Q in the Kalman model 
[67, 68].

We have recently shown how these two difficulties can be 
surmounted for our purposes using an approach that we call 
the discriminative Kalman filter (DKF) [67]. In brief, the DKF 
solves the problem of computationally intensive Bayesian 
filtering updates with judicious and theoretically motivated 
Gaussian approximations. Using these approximations does 
not require full knowledge of the observation model, but only 
requires knowing the conditional mean and covariance of the 
intended velocity given the current neural features. We denote 
the conditional mean and variance as the functions m(zt) and 
S(zt), respectively. The only requirement in using the DKF is 
to learn m(zt) and S(zt) during calibration (see sections 2.5 and 
2.7). Even though m(z) and S(z) are arbitrary functions, we 
refer to them as parameters of the decoder.

Despite the highly non-linear nature of m(z) and S(z), 
the calculations needed to compute the predicted intended-
velocity (given A, W, W0) may be performed in real time sys-
tems [67]. When the parameters m(z) and S(z) are updated 
(every 2–5 s during the calibration phase), we simply modify 
their values in the DKF update equations for future updates. 
We do not go back to time step 0 and repeat the entire DKF 
filtering algorithm with the updated parameters. We empha-
size that the DKF is distinct from the extended Kalman filter, 
the unscented Kalman filter, and related algorithms, which are 
based on combining Gaussian approximations with the con-
ditional mean and covariance of the neural features given the 
intended velocity; instead, the DKF approximates the intended 
velocity given the neural features. Loosely speaking, the DKF 
can be viewed as a principled way to do model-based tem-
poral smoothing of direct (nonlinear) regression predictions 
of intended velocity.

2.7. Decoders: parameter learning and updating

Each decoder has parameters that relate the intended velocity 
of the cursor to the neural features, namely, H and Q for the 
Kalman filter and m(z) and S(z) for the DKF. In principle, 
parameters could be learned from observed (xt,zt) pairs, how-
ever, the true intended velocity (xt) is always unobservable. 
Instead, we learn the parameters using the (yt,zt) pairs that are 
collected throughout the calibration phase (section 2.5). Recall 
that yt is the unit vector pointing from the cursor’s cur rent  
position to the known target. Our calibration algorithms 
simply use yt as a direct surrogate for xt, the rationale being 
based on the assumption that the user intended to move 
directly to the target at time t. At time step r, say, we horizon-
tally concatenate y1,…,yr into a 2  ×  r matrix Y and, similarly, 
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we concatenate z1,…,zr into a 40  ×  r matrix Z. The matrices 
Y and Z comprise the training data at time step r. For certain 
values of r (every 2–5 s), these matrices are used to update the 
parameters of the decoding algorithm.

Given Y and Z, the calibration for the Kalman filter computes 
H and Q, and calibration for the DKF computes m(z) and S(z). 
In both cases, we use standard regression tools: linear regres-
sion for H and Q and nonlinear regression for m(z) and S(z). 
Since closed-loop parameter updates begin updating seconds 
after the start of calibration, regression methods were chosen 
that provided non-singular solutions given small amounts of 
data. In both cases, we used Bayesian regression methods. In 
a Bayesian approach, uncertainty about a parameter is repre-
sented by a probability distribution. The Bayesian prior refers 
to the probability distribution before data has been collected. 
As new information becomes available, the parameter’s dis-
tribution is updated accordingly (referred to as the posterior 
distribution). Hence, Bayesian methods provide the experi-
menter a method for updating their belief of a parameter given 
evolving information. Note that the term Bayesian is used in 
two different contexts in this paper. Our decoding algorithms 
are based on Bayesian filtering, whereas our calibration algo-
rithms incorporate new training data using Bayesian param-
eter updating. In principle, decoding and parameter learning 
could be combined into a unified Bayesian procedure, but this 
would necessitate more complicated decoding algorithms and 
would be too computationally demanding to perform real-
time decoding.

2.7.1. Kalman filter with Bayesian linear regression. Given 
matrices Y and Z, the parameter H (relating motor intention to 
neural features) was updated via

H = ZYT(YYT + αI)
−1,

where I is the 2  ×  2 identity matrix and α was a regularization 
parameter (α  =  10−3). This particular method of updating H can 
be viewed equivalently as ridge regression or as Bayesian linear 
regression [68]. We will describe the Bayesian derivation. Let 
vec(H) denote the vectorization of H, i.e. the 80  ×  1 vector cre-
ated by stacking the 40  ×  2 columns of H on top of one another. 
We set the prior for vec(H) (given Y and Q) to be a multivariate 
Gaussian with mean zero and covariance α−1I ⊗ Q, where ⊗ 
denotes the Kronecker product, and we use the Kalman filter 
observation model (replacing xt with yt) which specifies that 
p(zt|Y, H, Q)  =  η(zt|Hyt, Q). Under this model (regardless of the 
prior on Q), the posterior mean of H is ZYT(YYT  +  αI)−1, and 
we use this as our estimate of H based on Y and Z. As more 
data were collected, the impact of the αI term decreased and 
our estimate for H approached the maximum likelihood esti-
mate that is traditionally used for selecting parameters for the 
Kalman filter [66]. After H was updated, Q was updated using 
the covariance of the residuals Z  −  HY.

2.7.2. Gaussian process regression. Given matrices Y and Z, 
the nonlinear function m(z) (relating neural features to motor 
intention) was computed via

m(z) = Y(K (Z, Z) + αI)−1K(z, Z)T,

where α was a regularization parameter (set to α  =  0.6), I is the 
r  ×  r identity matrix, K(z,z′) is the standard radial basis func-
tion kernel, K(Z,Z) is an r  ×  r matrix with Kij(Z,Z)  =  K(zi,zj), 
and K(z,Z) is a 1  ×  r vector with Kj(z,Z)  =  K(z,zj). Intuitively, 
the function m(z) returns a 2  ×  1 prediction of intended 
velocity by taking a weighted average of all of the intended 
velocities in Y (supplementary figure  1 (stacks.iop.org/
JNE/15/026007/mmedia)). The weights were determined by 
comparing the current vector z of neural features to the neural 
training data in Z using the radial basis kernel (i.e. a Gaussian 
kernel in 40 dimensions) as a measure of similarity (supple-
mentary figure 1). In this case the prior on the function m(z) 
was a zero mean GP with covariance kernel K and we update 
using the posterior mean. The function S(z)  =  S was taken 
to be constant and was estimated from the covariance of the 
residuals m(z)  −  Y. To emphasize that m(z) is learned with GP 
regression, we call our second decoder the GP-DKF.

We found evaluating m(z) was slow when the number of 
training points in Y and Z was too large. We used up to 60 s 
(3000 datapoints) of data for decoding with T5 and T10. For 
T8, we increased this to 120 s (6000 datapoints). The number of 
datapoints was chosen based on early validation of the GP-DKF 
method. Early validation of the GP-DKF also suggested higher 
quality cursor control using only band power for zt, rather than 
both band power and threshold crossing counts. For the purposes 
of comparing performance to the Kalman decoder, we selected 
40 features. Neural features were sorted into octants according 
to the direction of movement. Each octant contained a maximum 
number of datapoints (i.e. 3000/8  =  375), with corresponding 
buffer allocations. If the number of datapoints exceeded the 
buffer size per octant, the oldest data in that octant were replaced.

2.8. Performance measurement

After calibration, we quantified performance using a Grid Task 
after locking decoder parameters [13, 18, 52]. This task con-
sisted of a grid of N square targets arranged in a square grid 
(N  =  25, 36, 49, 64, 81 or 100, length of one side of square 
grid  =  24.2 cm, visual angle  =  24.8°). One of N targets was 
presented at a time in a pseudo-random order. Targets were 
acquired when the cursor was within the area of the square for 
1 s. Incorrect selections occurred if the cursor dwelled on a non-
target square for an entire hold period [69]. When comparing the 
GP-DKF decoder to the previously described standard Kalman 
calibration scheme [14–16], each comparison block was 3 min in 
length. When performing rapid decoder calibration comparisons 
with T10, each comparison block was 2 min in length. Block 
lengths were selected based on the participant’s preference.

The Grid Task is designed as a generalized version of a 
single-channel communication task, designed to measure 
target selection speed. The achieved bit rate (BR) measures 
the effective throughput of the system [52]:

BR = log2(N − 1)max (Sc − Si, 0) /t
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where N is the number of possible selections, Sc and Si are the 
number of correctly and incorrectly selected targets, respec-
tively, and t is the elapsed time. The max function ensures that 
the bit rate remains non-negative.

2.8.1. Testing performance as a function of decoder and 
calibration times. We performed a series of comparisons 
between the GP-DKF and Kalman decoders with variable 
amounts of calibration time. Decoders were calibrated using 
the Radial-8 Task, parameters were locked, and the perfor-
mance was measured using the Grid Task. For instance, when 
comparing performance of the Kalman decoder at 3 min ver-
sus 5 min, the Kalman decoder was first calibrated for 3 min 
and then immediately tested (representing condition A). Next, 
a new Kalman decoder was calibrated for 5 min before being 
tested with the Grid Task (B). Decoder/timing pairs were 
alternated, in an A–B–A–B format. Only data collected the 
same day were used for statistical comparisons.

2.8.2. Testing the new rapid calibration protocol versus the 
previous standard. To test the performance of the new cali-
bration protocol versus the standard calibration protocol, we 
began by calibrating using the technician supervised, comp-
uter-assisted, batch-based 11 min calibration scheme (as previ-
ously used in [14–16]). Calibration began with 2 min of open 
loop imagery, which was used to seed a decoder. Next, three 
blocks (3 min each) of closed-loop neural cursor control were 
performed, while computer assistance was gradually removed. 
Performance was assessed using the Grid Task. Next, we per-
formed 3 min of closed-loop decoder calibration using the GP-
DKF decoder, locked decoder parameters, and then assessed 
performance with the Grid Task. We used block-based feature 
mean updates for the standard Kalman decoder [16]. Only data 
collected the same day were used for statistical comparisons.

2.8.3. Isolating the calibration protocol versus the previous 
batch-based protocol. To test the performance effect from 
the rapid calibration protocol, we compared it to the standard 
batch-based method while controlling for calibration length. We 
began by having the participant attempt open loop motor imag-
ery for 1 min. The neural features and cursor kinematics were 
used to seed both the standard Kalman decoder (i.e. decoder 
parameters did not update for 2 min, condition (A) and the rap-
idly updating Kalman decoder (i.e. decoder param eters updated 
every 3–5 s for 2 min, condition B). After locking parameters, 
we then tested performance using the Grid Task, balancing the 
comparisons by alternating whether A or B was tested first.

2.8.4. Mean angular error measurements. To investigate 
performance saturation, we performed offline simulations 
of decoder performance by training decoders with variable 
amounts of training data. We computed the angular error 
between the predicted decoder value without filtering (i.e. 
the Kz term of the Kalman filter) and the label modeled as 
the vector from cursor to target [14–16]. Data from a single 
experimental session were concatenated together. A decoder 
was trained using a random subsample without replacement 
and then used to predict the mean angular error for another 

subsample of the same size. Decoder predictions were boot-
strapped 100 times.

2.8.5. Additional metrics. In addition to bit-rate and angular 
error, we also report two additional metrics. The first is time 
to target, which is the time between target presentation and 
acquisition by the user. The second is orthogonal direction 
changes, which is a measure of how consistently the cursor 
went towards the target [12].

2.9. Additional methods for participant T5’s first day  
of closed-loop neural control

Though participants often remain in the BrainGate and other 
BCI research for years [12, 18, 19, 41], there can only be one 
‘first day’ of attempted neural control. There is also special 
interest in understanding how rapidly a BCI-naïve user with 
tetraplegia might gain useful neural control of a BCI. We had 
the opportunity to deploy GP-DKF on participant T5’s first 
day of neural control.

Prior to T5’s first attempt at closed-loop neural control, the 
following text was read verbatim:

‘As you know, we are recording from a part of the brain 
responsible for controlling movement. In this part of 
the brain, the nerve cells respond to you attempting 
to move part of your body. You’ll be presented with 
a cursor and a target. We’d like you to think about 
moving your hand/arm/finger towards the target. As 
you try and do so, the system will be recording from 
the nerve cells. It will learn that [sic] the pattern of brain 
activity associated with wanting to go to a direction.
‘As you try to move the cursor to more targets, the 
system will learn a list of different responses. The 
cursor may not behave as you expect. For example, 
you may be trying to move the cursor to the right but 
the cursor moves to the left. This is OK. It’s not your 
fault. But no matter what the cursor is doing, keep 
trying to move it towards the target. The system will 
rapidly learn your brain signals and may start to 
correct within a few seconds. It’s important to stay 
consistent with what you’re attempting to do. For 
example, rather than repeatedly trying to move your 
hand to the left, you have to attempt to perform a 
continuous left-moving motion.
‘We’re going to try a few different imageries today. 
Can you think of some motions that would be intui-
tive to control a computer cursor on a screen?’ 

We explored a total of six motor imageries with T5. 
‘Joystick’ refers to the control of an airplane using a joystick, 
where the dominant hand is resting comfortably on a surface 
and moving a joystick in a particular direction driving cursor 
movement. Left movement occurs through pronation, right 
through supination, upwards with ulnar deviation, and down-
wards with radial deviation. ‘Whole arm’ refers to attempting 
to control the cursor by pointing using the index finger, where 
the shoulder and elbow are free to move with fixed wrist and 
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finger positions. ‘Index finger’ refers to imagery in which the 
wrist is resting comfortably on a surface, and the index finger 
is used to control a pointing stick mouse. ‘Stirring a pot’ refers 
to the imagery of holding a wooden spoon over a saucepan. 
The shoulder is fixed, and movement occurs with a combi-
nation of arm protraction and retraction, as well as elbow 
internal and external rotation. The wrist and fingers are fixed. 
‘Pointing at a target’ refers to imagery wherein T5 is pointing 
at the screen where he wants the cursor to go with his arm 
fully extended, the elbow and wrist locked. Moving left, right, 
up and down refer to arm adduction, abduction, flexion and 
extension, respectively. ‘Mouse ball’ refers to the control of a 
trackball mouse, requiring a combination of elbow and wrist 
movement, with a fixed wrist/finger orientation. T5 described 
the mouse ball imagery as being continuous as opposed to 
repetitive; that is, moving the cursor in a direction did not 
require repeatedly resetting his hand position. Importantly, 
due to T5’s injury, he was unable to actually perform these 
tasks. During all of the imageries, his hand and arm were com-
fortably at rest at his side. T5 decided to use the ‘joystick’ 
imagery for the very first attempt at closed-loop control.

The research session began with a 1 min reference block for 
computing spike threshold values and choosing channels for 
common average referencing. Thereafter, T5 attempted neural 
cursor control with the GP-DKF decoder. On the first attempt, 
the block was stopped after approximately 1 min when T5 indi-
cated that he did not understand he was supposed to have been 
attempting motor imagery (asking ‘when should I start?’). 

After being reminded that he should be using the ‘joystick’ 
imagery, the calibration sequence was repeated and T5 gained 
closed-loop neural control of the cursor (see Results).

After the ‘joystick’ imagery, T5 then achieved closed-loop 
control with each of the imageries in the order listed above. T5 
was then asked to select the top three imageries that felt most 
intuitive. He selected ‘joystick’, ‘index finger’, and ‘mouse 
ball’. We repeated calibration with each of these imageries. 
We presented him with the results of target acquisition as a 
function of calibration time (similar in format to figure 4), and 
provided him with the opportunity to select a single motor 
imagery that felt intuitive to use for the rest of the sessions. 
He selected ‘mouse ball’. Thereafter, he was asked to only 
use ‘mouse ball’ imagery for Radial-8 and Grid Task control.

3. Results

3.1. Rapid calibration with both GP-DKF and Kalman  
decoders

All three iBCI users with tetraplegia rapidly gained closed-
loop cursor control during the initial calibration sequence 
using the GP-DKF decoder (figures 2(A)–(D), supplemen-
tary figures 2 and 3 and supplementary movies 1–3). At the 
start of calibration, neural control was poor as expected; 
as more data were collected, each user gained better con-
trol in all directions. To assess performance saturation, 
we fit the calibration performance with an exponential 

Figure 2. Rapid calibration during the Radial-8 Task. Participant T10 performed a 3 min calibration sequence with either the GP-DKF 
(a) or the Kalman (b) decoders. Targets were acquired when the cursor overlapped the target for 300 ms, with a 15 s timeout. (c). Multiple 
calibration sequences from participants T5 (red), T8 (green) and T10 (blue) were done using the GP-DKF decoder, and with the Kalman 
decoder in T10 (grey). The thin dark lines are the average amount of time to acquire a target across all blocks (shaded area is  ±1 standard 
deviation). Averages are computed by binning data in 15 s increments, with a 5 s offset from calibration start. (d) Example cursor trajectories 
during calibration using the GP-DKF decoder (participant T5). The brightness goes from light to dark as time elapses during the 60 s interval 
of closed-loop neural cursor control. Data were used from trial days: 30 and 33 (T5); 662, 665, (T8); and 112, 203, 215, 236 (T10).
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curve, computed the exponential time-constant, and then  
estimated the amount of calibration data required to achieve 
95% maximal performance. We found the time to target per-
formance saturated with the GP-DKF within 3 min for all 
three participants (participant T5: 43s  ±  4s, T8: 136s  ±  54s, 
T10: 100s  ±  25s). Towards the end of calibration, the time to 
target acquisition was comparable to state-of-the-art Radial-8 
task target acquisition times with fully calibrated decoders 
and locked parameters [17]. Note that GP-DKF calibration 
with T5 and T8 did not use computer assistance, whereas T8 
used computer assistance for the first 60 s (see Methods [15]).

We further evaluated performance saturation for all three 
participants with offline simulations using a different perfor-
mance metric. By bootstrapping neural features and cursor 
kinematics within a single experimental session, we com-
puted the predicted the angular error between the simulated 
decoded direction and the known vector from cursor to target 
(see Methods). We found that offline predictions of decoder 
performance had an exponential behavior for all of the exper-
imental sessions we tested (figure 3). We fit the angular error 
curves using a decaying exponential, computed the decay 

half-lives, and then estimated the amount of neural data 
required to achieve 95% saturation of the minimum angular 
error. We found that offline simulations of angular error satur-
ated in under 3 min of calibration time (mean  ±  standard 
deviation; participant T5: 41.6s  ±  4.6s; T8: 83.3s  ±  9.9s; 
T10: 69.3s  ±  7.5s).

Next, we assessed neural closed loop decoder performance 
at various durations of decoder calibration. We calibrated 
decoders for 1, 3, and 5 min, locked decoder parameters, and 
then quantified performance using the Grid Task (supple-
mentary table 1, supplementary figures  4 and 5). Using the 
Kalman decoder, we found a statistically significant differ-
ence between bit rate at 1 min and 3 min, but did not find a 
statistically significant difference in bit rate between 3 min 
and 5 min (although there was a statistically significant dif-
ference in the number of orthogonal direction changes). Thus, 
we found that closed-loop neural control, as measured by 
communication bit-rate, saturated within 3 min of initializing 
calibration. For the GP-DKF decoder, we found a statistically 
significant difference between bit rate performance, time to 
target, and orthogonal direction changes at 1 min and 3 min. 
When comparing performance between the Kalman and 
GP-DKF decoders, we did not find a statistically significant 
difference between bit rate at 1 min and 3 min (although there 
was a statistically significant difference in the time to target 
and orthogonal direction changes).

3.2. Performance after rapid calibration

While closed-loop parameter updates provided users with 
closed-loop neural decoding that improved during calibration, 
we investigated whether there was any performance benefit 
that resulted from this rapid calibration protocol compared to 
the standard batch-based method (supplementary figure  5). 
Since the standard calibration method requires parameter ini-
tialization in order to provide users with closed-loop control, 
we initialized both decoding methods using 1 min of open 
loop imagery. We then calibrated both methods for 2 min 
without computer assistance, locked decoder parameters, and 
then tested each resulting decoder using the Grid Task. While 
neural cursor control improved during calibration, we found 
no statistically significant difference in bit rate, time to target, 
or orthogonal direction changes between calibration methods.

Finally, we investigated whether the shortened calibra-
tion provided similar performance to our standard calibra-
tion method previously described. We calibrated a GP-DKF 
decoder for 3 min and compared the performance against a 
batch base protocol using 2 min of open loop imagery and 
9 min of closed loop data with gradually decreasing computer 
assistance [12, 14–16]. For each of the three participants, the 
bit rate (figure 4), time to target acquisition, and number of 
orthogonal direction changes of the shortened calibration 
method was statistically comparable to the standard calibra-
tion method. When participant data was combined, there was 
no statistically significant difference between calibration 

Figure 3. Bootstrapped angular error as a function of each 
participant’s neural features used to simulate decoding. (A) For 
each experimental session, a decoder was trained using a random 
subsample, without replacement, and then used to mean angular 
error for another subsample of the same size. Decoder predictions 
were bootstrapped 100 times. Intuitively, the decoding performance 
would approach 90° as the amount of data approaches zero, since 
a poor quality decoder (e.g. one with limited training data) would 
decode a random angular error between 0 (perfect) and 180° 
(opposite) to the target. The average of a large number of random 
angles drawn between 0 and 180° would average to be 90°. (B) 
The angular error curves were fit using a decaying exponential, 
and the amount of data required to achieve 95% saturation of the 
peak angular error performance was computed. The bootstrapped 
mean angular error saturated in less than 3 min for all three users. 
(mean  ±  standard deviation; participant T5: 41.6 s  ±  4.6 s;  
T8: 83.3 s  ±  9.9 s; T10: 69.3 s  ±  7.5 s).
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methods (median  =  1.1 bit s−1 for GP-DKF versus 1.3 bit s−1 
for standard Kalman, Wilcoxon Rank-test, p  =  0.58).

3.3. Rapid calibration in a BCI-naïve user’s first  
neural control session

We were interested in investigating the speed and accuracy 
with which a BCI-naïve user could acquire closed-loop cursor 
control. Prior to his first-ever BCI research session, we pro-
vided participant T5 with a high-level description of the BCI 
system (as had been discussed over months prior to enroll-
ment) and detailed some principles of motor imagery (see 
Methods). T5 decided that he would use the imagery of his 
dominant hand controlling a joystick. On his first-ever BCI 
control session (Trial Day 30), after reporting that he under-
stood the instructions and indicating that he was ready, T5 
gained continuous, unassisted, 2D closed-loop cursor control 
using the GP-DKF. He acquired his first target approximately 
37 s after initializing calibration (figure 5, supplementary 
video 1). After using the system for 120 s, cursor performance 
was comparable to the most recent state-of-the-art Radial-8 
performance described in people [17].

Although T5 originally selected the ‘joystick’ imagery 
as being intuitive, we were also interested in exploring 
whether other motor imageries would be more intuitive, or 
result in higher quality closed-loop cursor control. Thus, 
following this initial calibration, we investigated six distinct 
motor imageries of both the proximal and distal dominant 
arm, allowing T5 to attempt to gain control using each of 
them one by one, restarting the calibration task over each 
time. Consistent with the heterogeneous representation of 
upper extremity movements at the level of individual neu-
rons in the motor cortex [70–74], T5 was able to achieve 
closed-loop control using all six imageries within ~60 s 

(supplementary figure  7). T5 then selected the imagery 
he found most intuitive: control of a mouse-ball with the 
dominant hand. After 3 min of calibration with the GP-DKF 
decoder using mouse ball imagery, the decoder parameters 
were locked, and performance was assessed in the Grid 
Task. T5 achieved a bit rate of 1.87 bits s−1 on his very first 
attempt at the Grid Task.

4. Discussion

Three people with tetraplegia rapidly gained high-perfor-
mance, 2D closed-loop neural control of a computer cursor 
using two markedly different approaches to neural decoding. 
Performance for all three participants saturated within 3 min 
of initiating calibration. Performance with each decoder was 
comparable to that obtained in previous studies using standard 
open-loop/closed-loop calibration routines that last ~10 min 
(see methods) [14–16]. In addition, a BCI-naïve man with 
high cervical SCI, gained closed-loop 2D neural control on his 
very first attempt within 2 min. This study thus provides addi-
tional progress and opportunities toward the goal of providing 
rapid and intuitive BCIs for people with paralysis.

The rapid calibration protocol reported here improves 
upon the traditional calibration sequence. Rather than explic-
itly using an open-loop imagery step, we provided the user 
with closed-loop control immediately after the first target was 
presented. This reduced the open-loop imagery phase from 
2–5 min to ~3 s in length.

So as to focus entirely on the decoder calibration methods, 
the implementation of the Grid Task here relied on users 
dwelling over targets for a predetermined length of time to 
make correct (or incorrect) acquisitions. We have previously 
reported higher bit-rate performance by participants acquiring 
targets using an additional mouse-click imagery [18]; fur-
ther research will combine the rapid 2D decoder calibration 
described here with additional state (e.g. click) detection 
approaches.

4.1. Future directions for iBCI systems

The ideal iBCI should provide immediate, intuitive resto-
ration of communication and/or mobility. Doing so would 
make it possible to immediately restore communication for 

Figure 4. Bit rate comparisons between decoder methods. After 
calibrating the GP-DKF decoder for 3 (T5—red, T10—blue) or 
4 (T8—green) minutes, the decoder parameters were locked, and 
the participants selected targets using the Grid Task. Bit-rates 
were computed for the GP-DKF decoder and compared to the 
performance using a Kalman filter using ~10 min of calibration data 
with an explicit open-loop imagery step [16]. Bit rates were not 
statistically different when comparing decoders within participants 
(Wilcoxon-rank test). Data were used from trial days: 30 and 33 
(T5); 660, 662, 665 (T8); and 84, 112 (T10).

Figure 5. Time to target acquisition as a function of time on T5’s 
first attempt at closed-loop neural control (trial day 30, block 3).
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someone who has become acutely locked-in due to brainstem 
stroke, where the current standard of care in intensive care 
units has been to rely upon patients’ (often unreliable) eye 
blinks or vertical eye deviation for communication. Short 
of achieving this ideal, additional clinical and experimental 
imperatives include the following: minimizing the amount 
of user effort required to engage the system; enhancing 
user engagement during early use [43, 44, 60, 61]; elimi-
nating calibration procedures that provide no feedback (i.e. 
an explicit open-loop imagery step) for users with impaired 
levels of alertness; early confirmation to users and caregivers 
that the BCI is working; and, a dramatic increase in research 
efficiency. Each of these imperatives is supported by a rapid 
calibration protocol.

All three participants in this study used intracortical elec-
trode arrays [62] requiring percutaneous connections. As 
fully implantable iBCI systems [75] are developed that work  
24 hours per day, the system should require less active inter-
vention by trained technicians, relying instead on automated 
procedures to guide everyday use. For example, once the 
explicit target-based calibration procedure is complete, the 
user should be able to move on to general computer use, 
including communication tasks, where the cursor target is not 
explicitly known by the system.

To continue to calibrate the decoder during self-directed 
on-screen computer use, we have previously described retro-
spective target inference as a method of labeling neural data 
with the BCI users’ intended movement directions based on 
their own selections, during self-directed on-screen keyboard 
use [16]. We did not investigate parameter updating during 
ongoing use; in future work, we hypothesize that combining 
retrospective target inference with the frequent decoder updates 
would continue to be an even more effective strategy for main-
taining calibration over long periods of practical BCI use. For 
example, decoders could be updated more frequently—after 
every click or other action that denotes an intended target—
rather than recalibrating only during self-timed pauses in BCI 
use [16]. We note that we did not explicitly examine long-term 
effects of learning on decoding performance. Future research 
would be able to disentangle performance improvements 
related to a user’s ability to learn a neuromotor (BCI) skill 
versus the performance improvements that may result from 
adaptive decoder recalibration.

4.2. Future directions with Gaussian process regression

The described new strategy for Gaussian process regres-
sion neural decoding departs from standard linear methods 
described in the human iBCI literature [11–17, 19–21]. 
Instead of relying on an explicit function to estimate intended 
movement from neural data [76], decoding is based on com-
paring incoming data to activity patterns associated with dif-
ferent intended movement directions. This GP-DKF decoder 
is computationally tractable using standard BCI hardware, 
and would be reducible to a fully embedded system [35, 75].

As this is an early demonstration of GP-DKF, multiple 
modeling assumptions remain to be explored. For instance, 

we focused on the popular radial basis kernel [77]. Additional 
gains may be sought by learning highly expressive kernel 
functions or incorporating a fully Bayesian feature selec-
tion using automatic relevance determination [77–79]. The 
highly non-linear nature (combined with multiple options for 
kernels) of the GP-DKF could provide a useful alternative to 
linear decoding algorithms for the control of end-effectors 
such as robotic arms [19–21] or functional electrical stimula-
tion systems [23, 24].

5. Conclusions

Brain-computer interfaces have tremendous potential for 
improving the quality of life for individuals living with motor 
impairments. As the field looks towards developing BCI sys-
tems that can potentially work 24 hours per day, it will be 
critical to make the calibration process rapid and intuitive. 
The current study suggests that intracortical BCIs can provide 
2D cursor control with performance plateauing within 3 min 
of starting calibration. Such results demonstrate an important 
step toward a neural prosthetic device that could be used by 
people with paralysis immediately upon deployment.
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