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Abstract

Introduction: Artificial intelligence (AI) and neuroimaging offer new opportunities for

diagnosis and prognosis of dementia.

Methods: We systematically reviewed studies reporting AI for neuroimaging in

diagnosis and/or prognosis of cognitive neurodegenerative diseases.

Results: A total of 255 studies were identified. Most studies relied on the Alzheimer’s

Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most com-

monly used AI method (48%) and discriminative models performed best for differ-

entiating Alzheimer’s disease from controls. The accuracy of algorithms varied with

the patient cohort, imaging modalities, and stratifiers used. Few studies performed

validation in an independent cohort.

Discussion: The literature has several methodological limitations including lack

of sufficient algorithm development descriptions and standard definitions. We

make recommendations to improve model validation including addressing key

clinical questions, providing sufficient description of AI methods and validat-

ing findings in independent datasets. Collaborative approaches between experts
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in AI and medicine will help achieve the promising potential of AI tools in

practice.

KEYWORDS

artificial intelligence (AI), Alzheimer’s disease, dementia, machine learning (ML), neurodegenera-
tive diseases, neuroimaging

Highlights

∙ There has been a rapid expansion in the use of machine learning for diagnosis and

prognosis in neurodegenerative disease

∙ Most studies (71%) relied on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) dataset with no other individual dataset usedmore than five times

∙ There has been a recent rise in the use of more complex discriminative models (e.g.,

neural networks) that performedbetter thanother classifiers for classificationofAD

vs healthy controls

∙ We make recommendations to address methodological considerations, addressing

key clinical questions, and validation

∙ We also make recommendations for the field more broadly to standardize

outcome measures, address gaps in the literature, and monitor sources of

bias

1 INTRODUCTION

There is a pressing need to improve diagnosis and prognosis for people

with dementia. Up to 20% of people may receive the wrong diagnosis,1

and differentiating between early symptoms in dementia based on

clinical information and neuropsychological testing alone is subjective

and prone to error. There is large geographic variability in the likeli-

hood of receiving a diagnosis, evenwithin a single country.2 Diagnostic

investigations such as neuroimaging and cerebrospinal fluid (CSF) tests

can support clinical diagnosis; however it can take years to receive a

diagnosis from the initial onset of symptoms.3 Receiving a timely and

accurate diagnosis is critical for peoplewith dementia, their carers, and

families:4,5 it provides the opportunity for forward planning; and with

the advent of disease modifying treatments an early accurate diagno-

sis will guide treatment selection, working toward a precisionmedicine

approach.6

Neuroimaging is a non-invasive investigation used in routine clinical

practice to support the diagnosis of dementia.7,8 A range of neu-

roimaging methods are used in dementia and magnetic resonance

imaging (MRI) is one of the most widely used to examine brain

structure,9,10 longitudinal patterns of atrophy,11 and changes in brain

function.12–14 Positron emission tomography (PET) is available in spe-

cialist centers and is more expensive; it is used to measure metabolic

activity, or using protein-specific ligands to identify underlying

pathologies.15–17

Human clinical judgment has traditionally been used to interpret

clinical neuroimaging.9 Visual rating scales may support this assess-

ment using features such as medial temporal lobe atrophy18 and white

matter hyperintensity load.19,20 However, the development of more

sophisticated approaches and richer data may mean that the most

informative features are not amenable to human measurement or

observation. For example, resting-state functional MRI can be used to

derive a variety of connectivity metrics between 1000s of nodes that

are amenable to machine learning (ML) approaches.21 Deep learning

methods have also demonstrated superiority to human neuroimaging

interpretation.22,23

ML algorithms facilitate the automation of neuroimaging interpre-

tation and have the potential to reduce bias and improve clinical

decision making.24–26 Neuroimaging data are particularly well-suited

to analysis using ML, particularly deep learning, given its high dimen-

sionality, non-linear nature and high covariance within the data. A

large and growing number of ML studies have investigated how neu-

roimaging features can be used to predict cognitive diagnoses and

conversion to dementia, fueled by the availability of large datasets,

such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI).27

However, uncertainty remains about which ML approaches have the

greatest potential to inform clinical decision making and how their

performance compares to human decisionmaking.

We therefore conducted a systematic review to establish: (1) the

extent to which ML approaches for neuroimaging have been used for

the diagnosis and/or prognosis of neurodegenerative diseases; (2) how

this field has progressed over time; (3) methodological challenges; and

(4) the future directions to facilitate the translation of MLmethods for

patient benefit in dementia.
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This review is part of a Special Issue on “Artificial Intelligence for

Alzheimer’s Disease and Related Dementias” published in Alzheimer’s

& Dementia. Together, this series provides a comprehensive overview

of current applications of artificial intelligence (AI) to dementia, and

future opportunities for innovation to accelerate research. Each

review focuses on a different area of dementia research, including

experimental models28, drug discovery and trials optimization29,

genetics and omics30, biomarkers31, neuroimaging (this article),

prevention32, applied models and digital health33, and methods

optimization34.

2 METHODS

We conducted a systematic review to investigate the use of ML meth-

ods for diagnosis and/or prognosis in cognitive disorders including

Alzheimer’s disease (AD), mild cognitive impairment (MCI), Parkin-

son’s disease (PD), vascular dementia, Lewy body dementia (LBD),

frontotemporal dementia (FTD), progressive supranuclear palsy (PSP),

Huntington’s disease (HD) and corticobasal degeneration (CBD). The

review is reported according to PRISMA (Preferred Reporting Items

for Systematic Reviews andMeta-Analyses) guidelines,35 and the pro-

tocol was registeredwith PROSPERO (ID: CRD42021232249) prior to

the screening of abstracts.

2.1 Search strategy

The databases MEDLINE (via Ovid), Embase (via Ovid), Cochrane

Library, BNI (via ProQuest), PsycINFO (via EBSCOhost), CINAHL (via

EBSCOhost), and Emcare (via Ovid) were searched using the title,

abstract, keyword, and MeSH term fields from inception to January

8, 2021, with the support of the Cambridge University Clinical School

Library. Results were limited to English language studies. Full search

terms for each database can be found in Supplementary Material

1. Studies which were known to the authors and met the inclu-

sion/exclusion criteria of the review, but were not initially identified

using the search strategy, were also included.

2.2 PICOS framework

Outline of the parameters of this systematic review according to the

PICOS framework:

∙ Participants: Patients with cognitive disorders due to neurodegen-

erative diseases.

∙ Index: Neuroimaging data assessed with ML for diagnosis and/or

prognosis.

∙ Comparator: Traditional manual/subjective diagnostic/prognostic

assessment.

∙ Outcome: Accuracy of diagnosis and/or prognosis.

∙ Study design: Controlled study.

RESEARCH INCONTEXT

1. Systematic Review: We conducted comprehensive

searches of MEDLINE, Embase, Cochrane Library, BNI,

PsycINFO, CINAHL, and Emcare to identify studies that

examine the potential of artificial intelligence (AI) and

machine learning methods applied to neuroimaging to

inform clinical diagnosis and prognosis in dementia and

other neurodegenerative diseases.

2. Interpretation: The use of AI in neuroimaging is expand-

ing rapidly with the evidence base being dominated by

studies conducted using the ADNI dataset, algorithmic

classifiers, and structural MRI focusing on Alzheimer’s

disease. Improved diagnostic accuracy was observed

when a combination of neuroimaging modalities was

used, e.g., PET and structural MRI. Findings also suggest

superior performance of discriminativemodels compared

to algorithmic and generative classifiers for the classifica-

tion of Alzheimer’s disease vs healthy controls.

3. Future Directions: We highlight gaps in knowledge, cur-

rent challenges, and issues to be addressed in future

research around reproducibility and reporting, relevant

clinical questions, and validation of results. We advo-

cate wider collaboration between clinical, neuroimaging,

and data science teams, and present recommendations to

move toward clinically useful, machine learning methods

applied to neuroimaging for dementia.

2.3 Inclusion & exclusion criteria

The inclusion and exclusion criteria used during the screening process

to determinewhich studies would be included in the systematic review

can be found below:

Inclusion criteria:

1. Primary research studies only.

2. Patient population consisting of AD, MCI, PD, vascular dementia,

LBD, FTD, PSP, CBD, HD, and/or all-cause dementia.

3. Involving at least one of the following neuroimaging or neurophysi-

ologicalmodalities: structural or functionalMRI, PET, single-photon

computed tomography (SPECT), electroencephalogram (EEG),mag-

netoencephalography (MEG), or ultrasound.

4. Used ML methods to investigate diagnosis and/or prognosis of

cognitive neurodegenerative disease(s).

Exclusion criteria:

1. Studies which did not include human participants.

2. Studies published in languages other than English.

3. Conference abstracts and book chapters.
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4. Articles which did not include primary research, for example,

reviews.

5. Studies where access to the full text was not available despite

attempts from multiple individuals involved in the screening pro-

cess.

6. Studies which did not use ML methods or only used simple logistic

or linear regressionmethods for classification.

7. Studies which combined neuroimaging with other biomarkers,

including CSF markers and/or genetics data, in the ML algorithms

without reporting ofmodel performance for neuroimaging features

without these additional biomarkers.

8. Studies which focused on automated segmentation techniques

which did not directly relate to diagnosis/prognosis of neurodegen-

erative diseases.

9. Studies which used AI methods for feature extraction but not

classification.

2.4 Study selection

The initial records were identified using the search criteria. These

records underwent de-duplication using a Zotero (https://zotero.com)

automation tool, which flagged possible duplicate studies, and were

manually screened by a reviewer to merge genuine duplicates. Fol-

lowing de-duplication, all studies were screened across two stages.

During the first stage, each abstract was independently reviewed by

two reviewers to determine their eligibility for inclusion based on the

outlined criteria using the screening tool Rayyan (https://www.rayyan.

ai/). Once both reviewers screened their allocated abstracts, inclu-

sion/exclusion decisions were unblinded. For abstracts where there

was disagreement between screeners, a third independent reviewer

assessed the abstract and made the final decision as to (1) progression

to full-text screening stage or (2) exclusion.

The second stage involved full-text screening of all included studies

by one reviewer per paper. For studies where the reviewer was unsure

if the study met the outlined criteria, a second opinion was sought and

a joint decisionmade after discussion with the second reviewer.

2.5 Data extraction

One reviewerper papermanually collecteddata fromeach report inde-

pendently into an Excel spreadsheet without the use of automation

tools. The following data were extracted from the included studies:

1. Article information: First author, year, journal, country of first

author’s affiliated institution.

2. Study method: Patient population(s), neuroimaging modality,

source of data. For studies using different datasets relating to a

study, information regarding which specific dataset was extracted

where possible. For example, for ADNI studies, the specific dataset

used (ADNI-1, ADNI-2, ADNI-GO, J-ADNI) was identified and

recordedwhere available.

3. MLmethods, extracted neuroimaging features.

4. Receiver-operator curve (ROC) analysis results from the ML algo-

rithm used to predict diagnosis/prognosis in the patient population,

including accuracy (ACC), sensitivity (SEN), specificity (SPE), area

under the curve (AUC), positive predictive value (PPV), and/or

negative predictive value (NPV).

2.6 Risk of bias assessment

Following the second stage of screening, all included studies were

assessed for risk of bias by one reviewer using a hybrid version of

the Joanna Briggs Institute (JBI) Critical Appraisal checklist covering

the areas we deemed most relevant to this area of research.36 The

specific questions used for risk of bias assessment and their outcome

for each study can be found in Supplementary Material 2. We only

excluded studies exhibiting clearmethodological concerns, such as lack

of reporting of basic participant demographics, in order to accurately

depict and identify current barriers in the literature limiting translation

to clinical practice.

2.7 Data synthesis and approaches to
classification

We used descriptive statistics to determine the following character-

istics of the extracted dataset: source of neuroimaging data, type of

neuroimaging used, ML methods, focus on diagnosis and/or prognosis,

accuracy of diagnostic/prognostic classifications, and global distribu-

tion of first authors’ institutions. Studies using MRI were labeled

according to the types of features used for the classification task

including volumetric structural, non-volumetric structural, and func-

tionalMRI. Volumetric structural imagingwas defined asMRImethods

measuring the volume of specific regions using voxel-based segmen-

tation techniques. Studies were classified as using non-volumetric

structural MRI if the features used for classification were related to

cortical thickness, texture, or surface area using T1- or T2-weighted

images and/or diffusion tensor imaging (DTI) data. The type of AI

algorithm used for the diagnostic/prognostic classification task was

extracted. Studies which used AI methods for feature extraction but

not classification were excluded.

Given a training set of labeled features, there are multiple ways to

learn a classifier that can then be used to predict class membership for

new, unlabeled instances. We categorized classifiers according to the

object they seek to learn or model.

1. Generative classifiers learn the joint distribution of the features

and labels.37 Examples includenaïveBayes and linear/quadratic dis-

criminant analysis. After training, it is possible to generate (hence

the name) new pairs of features and labels by sampling from the

learned joint distribution.

2. Discriminative classifiers learn the conditional distribution of

the labels given the features.38 Examples include logistic and
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Gaussian process regression with potential regularization, k-

nearest neighbors, and most ensemble methods (such as random

forests).

3. Non-probabilistic, algorithmic classifiers directly learn the decision

boundary in feature space.39 Examples include maximum margin

classifiers and support vector machines.

We note that some non-probabilistic classifiers can be reframed in

a probabilistic light.40,41 For this reason, some authors consider these

methods to be discriminative in nature and draw less of a distinction

between our types (2) and (3).

In order to determine how well a classifier generalizes to new data,

models are typically evaluated using a validation set consisting of

labeled data withheld from the training process. The model’s predic-

tions in the validation data can be compared to known labels using

a variety of different metrics; precision, recall, accuracy, AUC, and F-

scores are all estimated in this way. If a classifier performsmuch better

on training data than on validation data, this can indicate overfitting.

In such a case, the model may be refitted with regularization terms or

priors that penalize model complexity.

Following data extraction, we conducted a meta-analysis. Consid-

ering the large number of studies from a single cohort and significant

overlap of datasets, there is a risk of identifying spurious associa-

tions and false-positive findings when running a comprehensive meta-

analysis.42–44 We attempted to overcome these barriers by running

a focused evaluation of the performance of ML algorithms, mea-

sured with AUC values, for a specific task: classification of AD versus

healthy controls. This was achieved using a Stratified Weighted Ran-

dom Method (SWRM) approach by assigning weights to the datasets

and features (see further methodological details in Supplementary

Material 1).

3 RESULTS

The initial search strategy yielded 2709 studies, which underwent

abstract screening following de-duplication. Three additional studies

which were not picked up in the initial search strategy but met the

inclusion criteria were identified by experts in the field and underwent

full-text screening. The studies were consolidated to 255 studies after

full-text screening (full list of references in Supplementary Material

3). A flow chart of the screening process reported according to the

PRISMA 2020 guidelines35 is shown in Figure 1. The publication time

period ranged from 2005 to 2021. The included studies were classified

by country based on the institutional affiliation of the first author. The

most common countries included China (26%), USA (17%), Italy (7%),

France (6%), and South Korea (6%).

Risk of bias assessment resulted in exclusion of three studies which

exhibited clear methodological concerns, such as lack of reporting of

basic participant demographics (supplementarymaterial 2). Themajor-

ity of studies used clearly defined inclusion criteria (95%)with detailed

descriptions of participants and settings (91%). Only 41% of studies

explicitly identified potential confounding factors.

3.1 Datasets

Fewstudies usedmore thana single dataset,with233 studies usingone

dataset, 18 used two datasets, and the remainder used three or more

datasets. Themost commonly used dataset was ADNI (see Figure 2). In

the majority of the studies using data from ADNI, the specific cohort

used (ADNI-1, ADNI-2, ADNI-GO, J-ADNI) was not stated (129 of 181)

(Table 2 in SupplementaryMaterial 1). Where the cohort was available

(n = 52), 36 (69.2%) studies used a single cohort, 8 (15.4%) used two

cohorts, and 8 (15.4%) used three cohorts. Of those that used ADNI-

2 and ADNI-GO (n = 11), a majority (n = 9) also used ADNI-1. Apart

from using the ADNI dataset alone, 19 studies used data from ADNI

combined with other datasets including the UK Biobank and AIBL. The

majority (n = 11) of these combination studies used a local dataset in

addition to the ADNI dataset.

3.2 AI methods

The classifier type most frequently used was a non-probabilistic

algorithmic approach (48%), an example of which is support vec-

tor machines (SVM), followed by discriminative classifiers (32%)

which includes most neural networks. Generative classifiers and

“other” methods, mainly consisting of studies which combined

multiple AI algorithms to generate novel or complex classifica-

tion tools were difficult to categorize; each constituted 10% of

the literature. Most of these studies focused heavily on com-

putational methods which are not easily accessible to a clinical

audience.

The number of studies which used algorithmic classifiers (mainly

SVM) increased considerably between 2013 and 2015, after which its

use stabilized. In contrast, therewas a sharp rise in the number of stud-

ies using discriminative approaches (e.g., neural networks) starting in

2017,withdiscriminative studies outnumbering algorithmic studies for

the first time in 2019 (Figure 3).

In order to unveil potential differences in performance betweenML

methods, we examined AUC values for classifying AD versus healthy

controls across studies (Figure 4). Of note is that only 13% (11 of 84)

of these studies reported a confidence interval for the AUC value. Of

these 11 studies, 5 did not report the range of the confidence interval

(e.g., 90% or 95%).

We employed a meta-analytic approach using the stratified

weighted random method (SWRM) to weigh results based on the

dataset, imaging modality, and type of ML method used (method-

ological details in the Supplementary Material 1). We found that for

classification of AD versus healthy controls (i) discriminative models

(SWRM = 3.39, RSD = 0.948, Heterogeneity = Considerable) per-

formed better compared to algorithmic (SWRM = 2.42, RSD = 0.758,

Heterogeneity = Substantial) and generative (SWRM = 2.14,

RSD = 0.784, Heterogeneity = Moderate) classifiers; and (ii) each

R table expected to have 49 rows but has in the range of 6-8, which

indicates that most of the literature was limited to only few datasets

and imagingmodalities.

 15525279, 2023, 12, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13412 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [28/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5890 BORCHERT ET AL.

F IGURE 1 PRISMA (Preferred Reporting
Items for Systematic Reviews and
Meta-Analyses) 2020 flow diagram for
systematic review outlining the number of
studies identified and excluded at each stage.

F IGURE 2 Datasets used across included studies. Themajority of studies (n= 181, 71.0%) used the ADNI dataset alone or in combinationwith
another dataset. Local data were used in 69 (27.1%) studies. Multiple studies used a combination of two datasets or more resulting in an overlap
between the categories listed here. ADNI=Alzheimer’s Disease Neuroimaging Initiative, OASIS=Open Access Series of Imaging Studies,
AIBL=Australian Imaging, Biomarker & Lifestyle study of ageing, Bdx-3C=Bordeaux 3 Cities study, BLSA=Baltimore Longitudinal Study of
Aging, CADDementia=Computer-Aided Diagnosis of Dementia challenge, NACC=National Alzheimer’s Coordinating Center.

We identified four studies which used transfer learning for

classification45–48 which were trained on ImageNet45 ADNI (nor-

mal controls and AD),46 Human Connectome Project (HCP),47 and

generic images,48 and were transferred to ADNI,45 ADNI (stable

and progressive MCI),46 ADNI,47 and ADNI (sMRI).48 Transfer learn-

ing was typically used for fine tuning neural networks, particu-

larly when the authors felt the dataset was not sufficiently large

enough to properly train the neural network algorithm. Accuracy var-

ied between these studies, including for the following classification

tasks: AD versus healthy controls (90.4–99.1), MCI versus healthy
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BORCHERT ET AL. 5891

F IGURE 3 Changes in classificationmethods over time. This figure shows the rise in the use of discriminative classifiers in the last 4 years. The
use of algorithmic classifiers increased up to 2015 and has remained steady since. The use of generativemodels has stayed relatively stable since
its first use in 2005.

controls (83.2–99.2), and MCI converters versus non-converters

(70.6–81.6).

3.3 MRI

The number of imaging modalities used across the included studies

can be found in Figure 5. Structural MRI and PET/SPECT were the

most frequently used imagingmodalities for diagnosis and prognosis of

dementia, being used in approximately 71%and 25%of studies respec-

tively. Around half of studies leveraged structural MRI alone (134 of

255) and those making use of multiple modalities (49 of 255) often

used sMRI and PET (35 of 49) together. It is only since 2020 that stud-

ies incorporating three or more different modalities have begun to

appear.49–51

In total, 68.6% (175 of 255) of studies relied on volumetric struc-

tural MRI measurements. In the few studies that tested traditional

and AI approaches head-to-head, AI methods outperformed raw vol-

umetric measurements, for example, against hippocampal volume for

diagnosis52,53 and for predicting conversion of MCI to AD.54 The

reported accuracy of AI methods for the diagnosis of AD varied

between 60.2% and 99.3%. Of note, estimates in the lower range

were found when using a multi-class classifier (i.e., AD vs. MCI vs.

healthy controls, rather than AD vs. healthy controls)55,56 or where an

independent validation groupwas used.57

Contributing to heterogeneity, the aim of “diagnosis” differed

between studies using structural MRI. For example, there were 17

studies specifically targeting early diagnosis in which “early” disease

was variably defined by: MMSE score < 2458–60; CDR 0.5-148,61–63;

progression from MCI to AD within 18 months,64,65 2 years,66 3

years67,68; conversion more than 12 months after imaging69; or was

not clearly defined.70–72

Studies using longitudinal structural MRI measures (n = 6)69,73–77

suggest that multiple timepoints may be more accurate than base-

line measures alone for the diagnosis of AD,62 and were par-

ticularly useful when applied to the prediction of MCI to AD

conversion.69,75,77 Of interest, longitudinal changes in volumetric MRI

may need to be considered in the context of baseline volumetry to be

meaningful.74

Twenty-eight studies investigated the use of non-volumetric

structural imaging features for diagnosis (n = 24) and/or progno-

sis/conversion (n = 7). The input consisted of T1- or T2-weighted

images, DTI data, or a combination thereof, to estimate non-volumetric

features such as cortical thickness, texture, and surface area. These

studies focused on (i) optimization of image pre-processing techniques,

(ii) investigation of feature selection methods, and (iii) optimization

of classifiers and subsequent validation of the developed method.

The accuracy for differentiating between AD patients and healthy

controls ranged from 79.2% to 99.1%. Promising developments were

noted for differential diagnosis (e.g., vascular dementia vs. AD)78

and early diagnosis distinguishing MCI and healthy controls.79–82 As

expected, differentiating MCI subtypes and between MCI and AD

cohorts was amore difficult task, which is also often the case in clinical

practice. We found that performance was lower when predicting

MCI conversion to AD, or conversion of stable MCI to progressive

MCI.83–85

Twenty-six studies (the first published in 2012) used resting-state

MRI (rsMRI); we did not identify any studies using task-based MRI.

All but 4 studies51,52,86,87 focused on diagnosis and the majority

(20 of 26) used ADNI data, either as the primary dataset or as

a replication dataset. Graph measures were often used to summa-

rize network characteristics. Overall, the accuracy of discriminat-

ing between AD and controls ranged between 85% and 97%, but

dropped when discriminating between MCI and controls (70-88%).

Most studies reported the nodes which contribute most to discrimi-

nation between AD and controls: there was some heterogeneity, but

most often components of the default mode network (DMN) were

identified.88–91
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5892 BORCHERT ET AL.

F IGURE 4 Forest plot depicting AUC values for classifications of AD patients versus healthy controls. Confidence intervals are shownwhere
this was reported. Studies were stratified according to the type of machine learningmethod used including algorithmic (orange), discriminative
(blue), generative (green) and other (red). Unweighted average AUC values for each type of machine learningmethod is depicted with a diamond.

3.4 Neurophysiological imaging

We identified 24 studies which used neurophysiological imagingmeth-

ods, only three of which investigated non-AD neurodegenerative

diseases including PD and FTD.92–94 The majority of the studies

(n=21) usedquantitativeEEG,while the remainingusedeitherMEG,95

event-related potential EEG96, or combined EEG with SPECT.97

Although half (n = 12) of these studies have been published since
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BORCHERT ET AL. 5893

F IGURE 5 Imagingmodalities used across included studies.
fMRI= functionalMRI, DTI= diffusion tensor imaging,
DWI=Diffusion weighted imaging, EEG= Electroencephalography,
MEG=magnetoencephalographyMT=magnetization transfer,
PET= positron emission tomography, sMRI= structural MRI,
SPECT= single photon emission computed tomography.

2018, this cohort of publications also included some of the earliest

studies identified in this review starting in 2005.98,99 All neurophys-

iological studies used data from their local institution, the largest of

which included EEG recordings from 272 participants,100 although

most studies (n = 13) included less than 50 participants. In a man-

ner similar to other imaging modalities, SVM was the most common

(n = 12) ML tool used and no other algorithm was used in more than

three studies. Accuracy of discrimination betweenADandhealthy con-

trols varied from 69% in the single MEG study95 up to 100% in one

study using four EEG features.101

3.5 PET/SPECT imaging

Sixty-five studieswere identified using PET imaging, aiming to improve

early diagnosis (n = 46), prognosis (n = 13), or both (n = 6) using ML

approaches. The most commonly used approach was SVM (n = 27),

which when applied to FDG PET, demonstrated an accuracy of over

85% in studies for detecting AD hypometabolic patterns102–104 and

outperformed structural MRI when compared head-to-head.105,106

Using SVM with FDG PET data distinguished AD (>86% accuracy)

and MCI (>78.8% accuracy) from controls and predicted MCI conver-

sion within 12 months and up to 5 years with accuracies ranging from

72% to 80%.107–118 The same approach applied to amyloid PET also

demonstrated accuracies of >85% for predicting MCI conversion and

diagnosing AD.115,117,119–121 Non-SVM approaches, such as convolu-

tional neural networks and deep learning, on FDG PET and amyloid

PET showed variable performance in predicting a final diagnosis of AD,

cognitive decline, or MCI conversion,46,122–132 with accuracy between

75% and 100%. Model accuracy in multicenter studies (>70% accu-

racy) was lower than that of those relying on local datasets (>78%

accuracy).

Compared to ML methods which used PET alone, those which

combined imaging modalities (i.e., FDG PET, amyloid PET, and/or

MRI) were more accurate in terms of diagnosis of both MCI and

AD (min accuracy: 56% for PET alone vs. 72% for PET and other

modalities).109,115–117,120,133–135 An additional approach used PET

and structural MRI data in combination with other markers (i.e.,

apolipoprotein E4 [APOE4] status and cognitive scores) to train a clas-

sifier, then selected neuroimaging features for classification, showing

better performance when neuroimaging data (gray matter density,

amyloid burden, APOE4 status; r = −0.68) were used to predict

individualized rate of cognitive decline in MCI, compared to cogni-

tive predictors (depression, memory and executive function scores;

r = −0.4).136 Similarly, three studies showed that SPECT is able to

classify MCI and AD, but its predictive value for MCI conversion

improved when combined with other imaging modalities or cognitive

assessments.97,137,138

3.6 Approaches to prognosis in AD

Fifty-four studies investigated either prognosis or a combination of

diagnosis and prognosis. The majority were retrospective designs

(51 of 54). Of 54 studies, 47 (87%) looked at prognosis in terms

of MCI to AD conversion. Of these studies, two approaches were

used to evaluate the performance of prognostic predictions; some

exclusively used baseline data (fixed), while others used multi-

ple imaging time points (continuous) and related these to time to

conversion.

MRI alone was the main imaging modality used (36 of 54 studies)

with an additional six studies combining MRI and PET. Nine studies

used only PET data,102,111–113,116,122,126,139 one used SPECT,137 and

two used EEG data.93,95 The main outcome measure for these studies

was conversion to AD fromMCI over a prespecified period of time (47

of 54 studies). A smaller proportion of studies (n = 4) used cognitive

decline as an outcome measure. Similar to the diagnostic studies dis-

cussed in this review, themajority of the neuroimaging data came from

the ADNI database (78%, 42 of 54 studies). An additional three studies

combined local datasets with ADNI.

Thirty-eight studies used only baseline imaging data to predict a

future diagnosiswith a range of accuracy between 65%and 96% (mean

AUC 0.79, standard deviation 0.09). Seven usedmultiple imaging time-

points to make predictions with accuracies between 73% and 92%

(mean AUC 0.81, standard deviation 0.10). One paper found a sub-

stantial improvement with longitudinal data (AUC 0.93) compared to

baseline data alone (AUC 0.54),111 and a second paper achieved a

high level of accuracy using baseline neuroimaging information with

longitudinal cognitive scores (AUC= 0.90).70

Time to conversion was divided into two categories: conver-

sion within a fixed timeframe (42 of 47), or a continuous mea-

sure of time of conversion (5 of 47). Of those that used a fixed

timeframe, 5 studies considered conversion within 1 year (AUC

range: 0.72-0.90), 8 studies within 18 months (AUC range: 0.68-

0.79), 5 studies within 2 years (AUC range: 0.74-0.96), 17 stud-

ies within 3 years (AUC range: 0.65-0.93), and 7 studies pre-

dicted conversion over 3 years with a maximum of within 10 years

(AUC range: 0.54-0.91).
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5894 BORCHERT ET AL.

The main outcome of the remaining studies that did not focus on

MCI to AD progression (7 of 54) varied; 2 of 7 predicted cognitive

scores (Alzheimer’s Disease Assessment Scale—Cognitive Subscale

[ADAS-Cog]) over time using longitudinal MRI,140,141 while 2 other

studies predicted both cognitive scores (Mini Mental State Exami-

nation [MMSE]) and MCI to AD conversion within 24 months.77,142

Additionally, two of seven studies predicted conversion from cogni-

tively normal to AD in 759 and 2 years.64,143 Finally, only one paper

examined prognosis in non-AD neurodegenerative diseases, namely

PD andDLB93 with an AUC of 0.87.

3.7 Non-Alzheimer’s dementias

The majority of studies that included patients with non-Alzheimer’s

dementia used neuroimaging features to improve the differential

diagnosis between different dementia diagnoses. In total, 17 studies

included a non-AD dementia group, 14 featured a non-AD dementia

as the diagnosis of interest, with the remaining 3 using the non-AD

groups as a control group. FTD or behavioral variant FTD (bvFTD) was

the most commonly investigated non-AD dementia, with seven stud-

ies having FTD or bvFTD as their main focus.92,93,144–148 These studies

attempted differential diagnosis of FTD (from AD and/or LBD) most

often using neuropsychological data and structural imaging (four of

seven studies), with two studies using EEG92,94 and one using struc-

tural MRI for classification based on post-mortem pathology.147 Five

studies used data routinely collected in clinics (for example, frommem-

ory clinics) to attempt differential diagnosis between patient groups

based on imaging features and typically included FTD, LBD, PSP, CBD,

PD dementia, and vascular dementia.53,149–152

Structural MRI was the most frequently used imaging modality

(11 of 17 studies). Two studies focused on the differential diagnosis

between PD and LBD,93,153 and only two on vascular dementia.78,154

The majority of studies used data from local hospitals or memory clin-

ics (14 of 17 studies); one paper used local data combinedwithADNI,57

and three studies used multi-center or cohort data.144,148,150 Since

the majority of studies utilized prospective or retrospective data from

local clinics, datasets were relatively small compared to multi-center

studies like ADNI with most studies including 60 to 100 patients and

some as low as 15 patients in a single diagnostic category.78 The stud-

ies with larger patient numbers tended to come from multi-center

studies144,150 or used retrospective data over a long period of time.147

4 DISCUSSION

In this systematic review, we examined 255 published studies using

neuroimaging alone for the diagnosis or prognosis of neurodegenera-

tive disease. The vast majority of studies (71%) used the ADNI dataset

which primarily uses MRI and focuses on the conversion from MCI

to AD. The dominance of ADNI means that this emphasis is reflected

in the published literature, with the majority of studies using struc-

tural MRI alone or in combination with another MRI modality or PET,

almost all of which focused on AD. The size of the ADNI data has led

to a rapid rise since 2017 in the use of more complex discriminative AI

methodologies, including deep learning models. These more complex

models have in general outperformed simpler algorithmic and gen-

erative models, although comparison between studies is challenging

given differences in diagnostic criteria and outcome measures. Most

studies of diagnosis published ROC curve analysis results; however,

there were marked differences between studies in definitions such

as “early” dementia, and in the outcome measures used in prognos-

tic studies. There remain significant gaps in the literature including

non-Alzheimer’s neurodegenerative diseases (most strikingly vascular

dementia with only two studies), the limited application of promis-

ing neurophysiology methods, and validation in clinically relevant

populations.

ML methods have been successfully applied to almost every aspect

of neurodegenerative disease.155 A previous review of ML for neu-

roimaging in dementia included studies up to 2016,42 since when

the field has expanded rapidly. Approximately 60% of the studies we

included (n= 152) have been published since 2016. Some progress has

been made on the concerns raised by Pellegrini and colleagues, includ-

ing the overreliance onSVMclassifiers andMRI. SVMwas still themost

frequently used classifier in our cohortwhich is unsurprising given that

it was one of the first widely adopted methods. However, the overre-

liance on SVM classifiers has reduced, reflecting the rapid growth of

this field and moving toward the use of a range of ML methodologies,

as well as PET and/or multimodal approaches. However, despite this

surge in studies, several barriers prevent the integration of these novel

methods into everyday clinical practice. Belowwe discuss three critical

issues identified from this systematic review: (1) reporting and repro-

ducibility of methodology, (2) addressing clinically relevant questions,

(3) validation of results.

4.1 Methodological considerations

While it is encouraging to see a wide range of methods applied to neu-

roimaging data, the multiplicity of approaches creates a challenge in

assessing the validity of each method, comparing between differing

models, and independently reproducing the results. Although we did

not systematically review reproducibility, in general we found limited

descriptions of many models, and only a minority of studies reported

the availability of code to enable replication.

Reproducibility and transparency in neuroimaging research is an

increasingly prominent issue, most clearly outlined by Poldrack and

colleagues.156 The neuroimaging field has led the way in open science

efforts, such as large data sharing platforms pioneered by the Human

Connectome Project,157 and introducing best practice for analysis and

data sharing through the COBIDAS guidelines.158,159 To increase the

reliability of results, pre-registering analysis through platforms such

as the Open Science Framework160 has been advocated for in both

neuroimaging studies161 and ML methodologies.162 More generally,
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BORCHERT ET AL. 5895

staged approaches to model validation in ML are available to improve

confidence inmodel performance.25

We found that the combination of multiple imaging modalities,

such as MRI and PET, improved the performance of ML models for

classification tasks related to AD. We speculate that using features

from multiple modalities enables the models to train on several dif-

ferent biomarkers which provide a more holistic representation of the

underlying disease mechanisms, such as changes in structure (volu-

metric MRI), network-connectivity metrics (resting-state fMRI), and

metabolic physiology (PET). Although the results suggest this approach

may be beneficial, the limited number of studies identified here using

this method means that it is difficult to suggest which combinations of

modalities will be best at improving the performance ofMLmodels.

4.2 Addressing key clinical questions

Relevant clinical questions can be split into early diagnosis, differential

diagnosis, prognosis and predicting response to treatment. Therewere

no studies investigating the response to treatment, perhaps unsurpris-

ingly given that the currently widely available treatments for dementia

are symptomatic rather than disease modifying. The majority of stud-

ies considered the diagnosis of AD, or the prognostic prediction of

MCI conversion to early AD. However, variability in definitions such as

“early Alzheimer’s disease” limited comparison between studies. This

partly reflects the wider field where, for example, a clear definition

of MCI has remained elusive despite recent efforts to reach such a

consensus.163

We found no studies that assessed the common clinical challenge

of differential diagnosis from among multiple (>2) possible diagnoses.

This is a much harder problem to solve for ML algorithms because it

requires a multi-class classifier which is computationally more chal-

lenging and typically yields lower accuracy than a binary classifier.

The lack of appropriate multiclass data is a major limitation, partic-

ularly given the reliance on the ADNI dataset that consists almost

exclusively of amnestic MCI or AD patients. The National Alzheimer’s

Coordinating Center dataset has Alzheimer’s and non-Alzheimer’s

dementia patients from a real-world setting,164 but is much more vari-

able in scanning sequences (includingMRI field strengths), and reports

clinically defined diagnoses rather than research diagnostic criteria.

ROC curve analysis was widely used to characterize diagnostic

classification performance. In particular, we found the AUC is often

reported as themainmeasure of classification between groups, usually

accompanied by the PPV and NPV. The PPV and NPV are more rele-

vant to clinical practice, providing interpretation of the proportion of

correct positive and negative results for a classification. The outcome

measure for prognostic studies is more challenging. We found that

studies predicting prognosis usually grouped outcomes and applied

ROC curve analysis. This is particularly relevant for predicting MCI to

AD conversion; however, it is not applicable to other situations, such as

predicting the rate of cognitive decline in established dementia.

4.3 Validation of results

We found that studies using an independent dataset for validation, as

opposed to cross-validation or other similar methods, reported much

lower accuracy, particularly when a community-based population was

used. For instance, applying an SVM classifier trained on ADNI and

applied tomemory clinics foundmarkedly reduced accuracy in the clin-

ical setting (AUC = 0.76 for AD diagnosis) compared to that in the

training dataset (AUC = 0.96).57 A few recent studies have addressed

the risk of overfitting by assessing generalizability in unseen inde-

pendent research datasets,104,165,166 collectively demonstrating the

value of this approach in identifying methodological issues relevant to

the overall model performance. Therefore, validation studies are crit-

ical, particularly those in a memory clinic setting where the tools are

ultimately to be used.

The over-reliance on a single dataset such as ADNI introduces

potential ethnic and socio-economic biases to models that may ham-

per generalization, an issue that has been specifically raised in the

ADNIdataset.167 Concerns havebeen raisedmore generally about bias

in ML models,168 including in the context of health applications.169

This is of particular concern in marginalized ethnic groups who

have poorer health indicators in general,170 and who may miss out

on access to health services due to socio-demographic, cultural, or

religious beliefs,171 including dementia services.172,173 More repre-

sentative datasets are critical for models to translate reliably to all

parts of the population, to inform risk prediction models, and work

toward closing gaps in health inequality related to dementia. Address-

ing bias in these collected datasets, and differences between genetic

or ethnic groups in model performance, or applicability to different

socio-economic populations, will be critical to address in ongoing data

collection. It is unlikely that a single study or a single dataset can

properly address these challenging issues, so collaboration between

studies and between countries is required. This is happening to some

extent in initiatives such as J-ADNI in Japan which is almost identi-

cal to the North American protocol and has been used to compare

diagnosis and progression in dementia between both cohorts.174

Other examples include the Longitudinal Aging Study in India (LASI-

DAD)175 and through initiatives such as the Genetic Frontotemporal

dementia Initiative (GeNFI),176 which recruits multi-nationally. Feder-

ated learning may also help address this issue by providing broader

accessibility to datasets from diverse backgrounds and international

sources.

A number of methodological approaches are available for mea-

suring or mitigating bias.177 Examples include the geometric solution

to learn fair representations (He et al. 2020),178 which removes

correlations between the data and specified protected features, as

well as IBM’s AI Fairness 360 toolkit (Bellamy et al. 2019),179

which provides an accessible set of fairness metrics for a model and

accompanying explanations to help mitigate bias. We did not find

the issue of bias to be discussed or addressed in the studies we

reviewed.
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BOX 1: Recommendations to move toward clinically use-

ful,machine learningmethods applied toneuroimaging for

dementia

Recommendations formachine learning studies

Methodological considerations

∙ Provide sufficient description of the methods, with avail-

able code, to enable independent replication

∙ Use a staged approach tomodel validation

∙ Pre-register analysis

∙ Consider usingmultiple modalities

Addressing key clinical questions

∙ Clearly state the diagnostic criteria used

∙ For diagnosis, report performance in terms of ROC curve

analysis, including PPV andNPV, and confidence intervals

∙ Clearly definemeasures of prognosis, and consider the use

of odds ratios and survival analysis

Validation

∙ Independently validatemodels in at least one independent

dataset

∙ Validate findings in a real-world dataset (e.g., memory

clinics)

Recommendations for the fieldmore broadly

∙ Work toward consensus on outcomemeasures for diagno-

sis and prognosis

∙ Establish large datasets of non-AD and/or multiple types

of dementia

∙ Establish open datasets for EEG comparable to those with

MRI

∙ Monitor ethnic and sociodemographic bias in data collec-

tion and encourage cross-study collaboration to address

these biases

4.4 Challenges for the field

Some of the issues we have highlighted can be addressed by individual

researchers, but others require engagement from the neuroimaging,

ML, and clinical communitiesmore generally. This kind of collaboration

has proven successful in initiatives such as ADNI. Although ADNI is a

powerful dataset and has facilitated the use of more complex method-

ologies, similar collaborations for data collection and curation are

required to help address ML for non-Alzheimer’s neurodegenerative

disease, and for EEG data.

Given the challenges of comparisons between studies using differ-

ent methodologies and definitions, we suggest the field move toward

consensus on outcome measures. Diagnostic criteria exist for the

major neurodegenerative disorders, but better definitions of ‘early’ dis-

ease, and standardmethods to assess prognosis would facilitatemodel

selection.We outline our recommendations in Box 1.

In addition to overcoming these barriers related to transparency,

establishing large, diverse datasets, external validation and consensus

definitions, we will also need to address translational challenges more

broadly to implement AI into real-world clinical settings.180 Over-

coming the technical obstacles of integrating AI will be required for

different types of bias/artifacts when data are conglomerated from

various sources/institutions181 while ensuring the security and privacy

of sensitive health records for storage and sharing.182 Several factors

currently limit the adoption of AI tools by clinicians including iden-

tity threat,183,184 disruption of clinical workflow, and the uncertainty

surrounding the basis of “black box” algorithms, particularly when the

output disagrees with their own clinical judgement.185 By improving

interpretability, explainable AI may be the most amenable approach

to building trust and understanding in the medical profession.186 Fur-

thermore, social and legal issues will require significant attention if

implementation ofAI into clinical practice is to be successful. For exam-

ple, there remains uncertainty about which party is responsible when

the use of AI tools result in harm fromboth legal187 and patient188 per-

spectives, while patients in generalmay prefer human supervision over

AI.189

4.5 Limitations

This systematic review has three main limitations. First, although

we aimed to provide an informed and broad overview of the exist-

ing literature on this subject, our exclusion of reports not written in

English and those where the full text was not available meant that

some studies which would have otherwise met the inclusion crite-

ria may not have been covered in this review. Two key additional

exclusion criteria were the decisions not to include studies using lin-

ear regression for classification, and studies combining neuroimaging

with other biomarkers without reporting the model performance for

the neuroimaging features in isolation. Our motivation was to focus

specifically on neuroimaging, and specifically on recognized ML meth-

ods, but it is possible we excluded studies with high clinical value and

translational potential.

Second, the heterogeneity in classification tasks, ML methods used

and statistical reporting across studiesmay have introduced bias when

trying to decipher which tasks and results to extract. More specifically,

this was an issue with themore technical studies which comparedmul-

tiple (often> 5)MLmethods across three ormore classification groups

introducing a large number of comparisons and results to consolidate

and extract. For this reason, we decided to run our meta-analysis on

a very specific task from which we could extract the AUC value for

classifying AD versus healthy controls. This heterogeneity in AI meth-

ods, imaging modalities, and patient cohorts also meant that we were

unable to provide insight into which features performed best for spe-

cific classification tasks. We do not address significant ethical issues

in big data analysis of data security, consent to data sharing, and the

acceptability of AI methods to clinicians and the general public.

Third, we employed a risk of bias screening tool that depended on a

subjective judgment for each paper’s inclusion or exclusion, and there
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BORCHERT ET AL. 5897

may have been heterogeneity in this assessment between screeners.

We chose a low threshold for inclusion based on study quality in

order to accurately depict and identify current barriers in the litera-

ture limiting translation to clinical practice. We only excluded studies

exhibiting clear methodological concerns, such as lack of reporting

of basic participant demographics. The screening tool had a binary

outcome (inclusion/exclusion), and we were unable to investigate the

potential relationship between study quality andML performance.

5 CONCLUSIONS

In this systematic review, we generate a number of recommendations

to facilitate translation of ML methods for patient benefit in the diag-

nosis and prognosis of dementia.Wehighlight issues ofmethodological

heterogeneity, clinical relevance of results, and validation/replication

of findings. We offer a set of recommendations to address key gaps

in the literature including the importance of addressing key clinical

questions, providing sufficient details of AI methods, and validating

findings in independent datasets which are clinically relevant. Look-

ing forward, the field is likely to move toward the establishment

of real-world datasets, multi-model imaging methods, and complex

ML algorithms emphasizing the importance of providing sufficient

methodological details to enable independent replication.We are opti-

mistic that addressing these concerns will accelerate the translation of

MLmethods for patient benefit in neurodegenerative disease.
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