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Abstract 

Machine learning techniques are effective for building predictive models because they identify 
patterns in large datasets. Development of a model for complex real-life problems often stop at the 
point of publication, proof of concept or when made accessible through some mode of deployment. 
However, a model in the medical domain risks becoming obsolete as patient demographics, systems 
and clinical practices change. The maintenance and monitoring of predictive models’ performance 
post-publication is crucial to enable their safe and effective long-term use. We will assess the 
infrastructure required to monitor the outputs of a machine learning algorithm, and present two 
scenarios with examples of monitoring and updates of models, firstly on a breast cancer prognosis 
model trained on public longitudinal data, and secondly on a neurodegenerative stratification 
algorithm that is currently being developed and tested in clinic.  

Introduction 

Visualise the following workflow: There is a stream of patients presenting into a hospital, each 
patient case is rich in accompanying data – both health and ‘social’ – all accumulated in a large 
database. For each patient, machine learning algorithms offer augmented intelligence to the 
clinician, for example, by locating patients in clusters characterising either medical diagnosis or 
prognosis. Armed with information about outcomes of treatments for similar patients, the clinician 
designs a treatment plan. The outcome of the treatment is monitored and recorded. 

New patient data and well as updated records is precious resource. In today's algorithm-led 
domains, what should our considerations be in order to make full use of this resource [18]? 

Data changes over time and in space, illustrating two orthogonal modes of change that models must 
contend with.  Such changes in data inputs are commonly referred to as drift [20] result from 
temporal changes (for example, weight or smoking habits of patient population changing over time) 
or behavioural changes (for example, differences in data collection and interpretation under 
multiple clinical settings). They can also result from geographical and socio-economic changes (for 
example. patients at different hospitals may be different in demographic terms.) 

Machine learning algorithms are trained on data. Because of data drift, the performance of a model 
for complex real-life problems does not peak and remain fixed at the point of publication or proof of 
concept or even point of deployment. Updated patient records contain information that: 1) enriches 
existing datasets and 2) may reflect emerging patterns. If the first is the case, machine learning 
algorithms could be updated to increase robustness; if the second, algorithms should be adjusted to 
reflect new data distributions. Either way, this requires an ongoing assessment of the effectiveness 
of treatment plans and if this is being done for many patients, the system – a ‘Learning Machine’ – 
can continuously identify optimum treatment plans.  
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A Learning Machine’s strongest benefit is that the system remains safe and becomes more effective 
with time because data inputs are monitored, and the model is updated with the changing statistical 
properties of its inputs.  

Monitoring and updating is crucial to high-stake environments that demand transparency and 
accountability. A model developed using retrospective data in the medical domain risks becoming 
obsolete as patient demographics and clinical practices change. One study has provided some 
insights into the speed in which performance deteriorates, with deterioration occurring as early as a 
year after deployment [19]. Another study links the performance deterioration to drifts in data 
recording practices [20]. 

“Clinical data is highly dependent on the landscape of clinical practice as well as underlying 
population demographics and comorbidities, all of which vary over time. The complete utility of a 

healthcare model can be nearly impossible to ascertain unless one accounts for the inevitable effect 
of temporal dataset drift.” 

Nestor et al. [20]  

There are major research challenges that underpin this development: 

The first lies in the creation of effective machine learning models for medical diagnosis and 
prognosis. This is especially challenging in healthcare as the results for a patient (or patients in a 
cluster) depend on complex factors such as medical histories, co-morbidities and demographic-
dependent aetiology. This area is one in which many health-related AI applications are based. 
However, in the healthcare diagnosis or prognosis prediction domain, much focus is based on 
creating an instance of a model, that is, a model that is trained on a static dataset. When model 
development is complete, the emphasis will eventually shift to how to build the tools, infrastructure 
and regulations needed to efficiently deploy innovations in ML in clinical settings [18], while 
considering behavioural and temporal shift in data as described above. 

Another challenge is data management: it is non-trivial to handle large, complex, volumes of multi-
modal time series data, potentially stored across different IT systems. Care must be taken that data 
from a single patient such as observations, lab tests and treatments are recorded using the correct 
vocabularies and linked to form a coherent timeline of the patient’s journey. If datasets from two 
hospitals are linked, common vocabularies and a good understanding of both hospitals’ operations 
and practices are necessary to ensure no information is lost. In this scenario, there is the additional 
challenge of maintaining patient privacy. Hospitals balance the benefits of linking data for richer 
datasets and releasing data to enable research, against the possibility of patient privacy loss.   

There are also the difficulties in designing and recording workflow feedback loops to provide 
transparency and accountability that healthcare systems demand. It is difficult to build user-trust in 
a system whose recommendations following model updates may change over time. There is also 
difficulty in communicating information that accompanies a prediction, such as confidence and 
uncertainty. 

In the rest of this paper, we develop and apply the idea of a Learning Machine. We will be presenting 
the systems design of an ML workflow in the context from a Learning Machine. We will briefly 
describe both the research analytics and engineering challenges to be addressed in order to 
implement the workflow. We will then present two use cases where we explore the relationship 
between data drift (both temporal drift and changes in clinical settings) and machine learning 
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performance. We will discuss what this means for the next steps in Health and propose how these 
challenges might be applicable outside Health. 

1. Architecture of a Learning Machine 

We will now build on the outline in the previous section and formalise the notion of a Learning 
Machine, characterised by four key phases: 

1. New data records are generated from patients through a set of transformations 
including data collection and wrangling, with generated summary statistics and tests 
to ensure the data is correct. 

2. Analytics are performed through machine learning. 
3. Results are provided in the form of augmented intelligence for a decision-maker 

who uses this information to design an intervention. 
4. Runs an evaluation of consequences from this intervention.  

This is followed by a fifth phase: 

5. A feedback loop to update records.  

It is the existence of new data that enables updating and rerunning of analytics in the next cycle. 
Updated augmented intelligence aims towards improved ‘optimum’ interventions over time, with 
this form of ‘learning’ providing the central concept of a Learning Machine. This abstract idea 
provides the basis for a wide range of applications but, in the first instance, illustrate its application 
in health. 

 

Figure 1: An abstract depiction of the central workflow of a Learning Machine:  1) Add new or updated data records à Prepare 
data for analysis; 2) Perform ML-type analysis à Inference and predictions, explain analysis results; 3) Communicate to 
decision-makers à Specification of action plans; 4) Evaluate outcomes à update data records; 5) Feedback into system à 
New data generated. Step 1 repeats with updated records, and new samples. 

In Fig. 1, a Learning Machine is depicted in a generic healthcare system. We assume the core of the 
analysis of patient data is implemented through machine learning (ML) and the output offers 
augmented intelligence on diagnosis and prognosis to clinicians. They in turn produce treatment 
plans whose impacts are evaluated over time. These evaluations offer modified patient data for 
subsequent cycles.  

To make this more tangible, consider the flow of patients into a hospital presenting with a heart 
problem. A machine learning algorithm will construct a diagnosis for an individual patient based on 
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the patient’s data and might locate the patient in a cluster, based on socio-economic factors and 
state of the cardiological disease. It may also offer a prediction given past disease trajectory: what is 
the probability of the patient having a heart attack in one year, two years and so on? These 
probabilities will be a function of the patient’s medical history, including such complicating factors as 
co-morbidities’, presenting a challenge for accurate prediction. The clinician, based on the 
augmented intelligence combined with professional judgement, will produce a treatment plan. For 
example, the plan might involve medications and informing the patient’s GP of this predicted 
trajectory. This additional information enables the GP to better recommend lifestyle changes, to 
reduce risk and avert the predicted medical incidents.  

There will be a variety of such plans from the population of clinicians, and these will be evaluated 
over time with the results fed back into the patients’ data for later years. Since the new data will 
include the effectiveness of treatment plans, the machine will ‘learn’ and, over time, will deliver 
optimum and personalised treatment plans. This system is shown diagrammatically in Figure 2. 

Figure 2: Depiction of an applied learning machine in the context of healthcare provision 

 

2. Analytics challenges for a Learning Machine: How to detect drifts   

This section of the learning machine infrastructure addresses how to detect differences resulting 
when data has shifted over time, or when the model is deployed on a different patient demographic. 

In the healthcare domain, datasets typically contain many patients with their medical histories 
needing to be pieced together from multiple modalities and sources. This process demands 
considerable domain expertise, data linkage and wrangling, to avoid misinterpretation and minimise 
loss of information. As part of data wrangling, data quality reports and descriptive statistics should 
be generated as per drift monitoring below.  

Drift monitoring means monitoring the properties of a dataset (for example, distributions of patient 
features and outcomes) and evaluate the performance of the model on the latest data. Machine 
learning engineers need to consider how a change of information content (for example, records of 
new lab tests, imaging modalities or genomics data) or granularity (for example data recording 
practices differ across clinics) affect machine learning decisions. New types of data (such as a new 
diagnostic test) may become available, which could increase the predictive power of the model if it 
were included. New screening procedures may introduce patients at earlier stages of diseases. 
Alternatively, model performance may drop over time due to improvements in treatment or other 
changes that are not reflected in the original model.   
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A package that can be used to track datasets for purpose of comparison measurement is the open-
source Python package ‘Learning Machines Drift’ [23]. It works by allowing users to log a reference 
dataset as well as log subsequent new datasets. The package uses a set of statistical methods such 
as Kolmogorov-Smirnov and boundary adherence to quantify the differences between reference and 
subsequent data, and to assess if prediction outcomes and confidence values from the two datasets 
are drawn from different distributions. The package also uses machine learning approaches such as 
logistic detection and other classification methods to quantify differences, by measuring how well a 
model can be trained to classify between two datasets.  

All these differences when measured will be flags to machine learning engineers about how the 
landscape of patient data is changed and offer them the opportunity to evaluate if the model is still 
appropriate.  

3. Analytics challenges for a Learning Machine: When to retrain   

This section of the Learning machine infrastructure addresses when to update machine learning 
models.  

In the healthcare domain, machine learning algorithms are deployed for different purposes, with 
different requirements and work under different constraints. For example, when the goal is to 
suggest an optimal treatment plan for a given patient, a model that is designed to estimate the 
treatment effect and predict counterfactuals is needed [2,3]. When the goal is to predict which of 
the co-morbidities are more important for a particular individual’s prognosis, a model capable of 
comparing competing risks is required [4]. When the goal is transparency, an example of a successful 
application of ML in healthcare is AutoPrognosis [12] which creates a priority list of patients with 
Cystic Fibrosis (CF), a disease with multiple co-morbidities [17] for lung transplant referral. It was 
shown using UK CF registry data that the ML method could improve the accuracy of clinical referral 
by 35% over traditional methods [13] while ‘explaining’ the important features leading to the 
ordering of the referral list. 

However, after deployment and when data has drifted to effect performance deterioration of these 
algorithms, there is a need to retrain the model with new data or replace a model with one that 
works better with the distributions of the new data. 

The machine will have to ‘decide’ when to retrain the model using information from drift 
monitoring, as described above. When this decision is taken, machine learning engineers must 
consider that a different machine learning approach may be more effective with coping with new 
data distributions. Therefore, the model retraining process should incorporate not only tuning the 
weights and hyperparameters of the previous model, but also the possibilities of 1) tuning 
hyperparameters using a different method or 2) using a completely different model or algorithm 
that yields better performance. This is a time-consuming task. 

One option is to automate the comparison of a stable of approaches, as implemented in Auto-ML. In 
Auto-ML the goal is to select a method and tune a new model for a dataset without relying on a 
human expert. The authors use Bayesian optimization techniques [16] to find the right model and 
hyperparameters for a given dataset. When retraining is required, Auto-ML can retune 
AutoPrognosis and compare the updated model to other approaches in the Auto-ML stable, 
potentially suggesting a new model to be used. The Auto-ML approach for model selection would be 
beneficial in the context of a learning machine as they minimise the additional monitoring burden 
that arises. 
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4. Support infrastructure for a Learning Machine 

In order to realise a Learning Machine architecture, there are several other important technical 
challenges we explore in this section. In reference to discussing these challenges, in Fig. 3 we provide 
a schematic of the components and the flow of data. Patients arrive in clinic and their data is 
transmitted through an API call to a deployment server where two events occur: 

1. The deployment server contains a version of the current deployed model and provides a 
response containing suggested treatments and metrics to the clinician. 

2. The data is transmitted to secure storage for further model development and monitoring. 

Within secure storage the data is processed, monitored and incorporated into new proposed 
models. The silent monitoring processes include the use of descriptive statistics, performance 
monitoring and reproducibility checks. Periodically the model contained on the deployment server is 
updated with model proposals where it is deemed performance improvements can be made with 
the update. An additional data submission to the deployment server is necessary to capture 
outcomes of the patients. 

 

Figure 3: The components forming the support infrastructure of a learning machine deployed in the healthcare setting utilising 
secure storage and silent monitoring. 

Secure storage 
Data will have to be securely stored and processed, keeping confidentiality and privacy in mind as 
the learning machine may use detailed patient-level and potentially (re-)identifiable records.  

Environments such as the Data Safe Haven developed at The Alan Turing Institute [11] are designed 
to allow teams of researchers to analyse sensitive datasets safely and productively. It provides a 
framework for data owners to classify the sensitivity of their data, and automated tools to deploy 
infrastructure in the cloud tailored to that sensitivity tier. Examples of secure research environments 
in healthcare specifically include University Hospitals Birmingham’s PIONEER [14].   
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Continuous safety monitoring 
Tests must be in place to show that the system will “do no harm”[21]. This is currently maintained in 
our recommended procedures by ensuring that the clinicians can combine the intelligence offered 
with their clinical judgement. As time progresses, it may be that more of the process can be 
automated. 

Transparency 
The workings of the learning machine need to be transparent in order to generate trust and enable 
accountability. Transparency in this case relates to interpretability and uncertainty. 

Interpretability 
Since the learning machine will interact with human experts it is vital that predictions made by the 
model are interpretable. There are several notions of interpretability in the literature [5]. Instance-
wise feature selection is one mode, where the ‘interpreter’ provides the most important features for 
making a particular prediction for each instance [6]. Another mode of interpretation is uncovering 
the statistical interactions captured by the model [7]. Depending on the task in hand, one of these 
methods could be more suitable and useful for human specialist.  

Uncertainty 
A model makes predictions; these predictions are paired with information denoting levels of 
uncertainty about the prediction. When the learning machine is used in sensitive applications like 
healthcare or criminal justice it is crucial that we provide uncertainty levels to human experts such 
that they can decide how to use the model output. Several different methods can be used for 
estimating uncertainty. Some models automatically provide uncertainty scores through their output 
being a continuous score that may be given a probabilistic interpretation representing the aleatoric 
uncertainty of individual outcomes. For instance, a neural network trained for classification usually 
gives the probability that the subject belongs to a particular class, the largest of these probability 
scores is an indicator for the uncertainty level. In addition, an understanding of the epistemic 
uncertainty associated with inferred model parameters and prediction outputs itself is important. 
Several methods are devised in the literature for estimating epistemic uncertainty of model outputs 
for a general model as a post processing step, which can be used in LM setting [8]. The uncertainty 
estimation can also be used to decide when to trigger model retraining. When the confidence 
intervals start to become larger, it is an indication that the distribution of the input has changed [9]. 
This issue has been studied in the literature about out-of-distribution (OOD) uncertainty [10]. 

5. Test cases 

This section describes through examples how the concept of Learning Machines could be used to 
support two healthcare-related scenarios. 

Scenario 1: Breast cancer prognosis 
The first scenario describes how we measure differences between earlier and latter years’ breast 
cancer data and to examine if a survival prognosis model that has been built using earlier year’s 
clinical data would still perform as well on cases from latter years. 

The Surveillance, Epidemiology, and End Results (SEER) Program [22] has collected data on cancer 
diagnoses and outcomes in the USA since the 1970s. In total, the SEER datasets typically contain 
upwards of 5 million tumours across 10% of the US population, depending on the specific subset 
used. They include anonymised patient-level data, including demographics as well as information on 
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the diagnosis (such as the type, stage, and grade of the tumour), treatments and survival outcome 
for each patient. 

There are several changes we may expect to see from data over the last three decades. For example, 
detected tumour sizes may become smaller over time, due to changes in clinical practices such as 
increased screening. There are also demographic changes, for example smoking cessation or 
increased alcohol intake, which affects the age distribution of the patients. Depending on the 
features that the model relies on for making a prediction, these changes could be the types of drift 
that affects model performance. A learning machine will flag drift by continuous appraisal of inputs, 
model output and actual patient outcome. Without infrastructure to monitor data in place the 
machine learning model may become obsolete, and, without notice, performance may deteriorate 
and affect patient safety adversely. 

We have used SEER to demonstrate the learning machines concept on a prognostic question: given a 
breast cancer diagnosis, what is the 5-year survival probability for a patient?  

The first step we took is to visualise the differences in datasets across the years. Figure 4 below 
shows a screenshot from the tool that we developed to explore SEER data, select data for training 
models, and compare models’ performances across time.  In the top section, we have a timeline that 
shows the years from which data is available. We have checked the timeline to visualise data from 
years 1982-1992 and to use this to train a model. The section on descriptive statistics shows patient 
frequencies of survival rates, cancer stages and tumour grades and sizes, from the selected years. 

  

Figure 4: This figure shows the frequency of survival rates, cancer stages, tumour grades and sizes from 1982 to 1992. 

Using the tool that we built, predictions from models trained on different datasets can be stored, so 
that model performance can be compared over time.  For example. we can train models with data 
from a set of years and test them on data from subsequent years, to assess whether that model 
would have continued to accurately predict survival outcomes for patients diagnosed in the years 
ahead. With advances in cancer treatments, we may expect the original model to underestimate 
survival chances in later years.  

Figure 5 below shows predictions, survival outcome and feature importance from predictions of 
three models, for two patients. Figure 5a represents a set of predictions for a patient who died of 
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breast cancer within 49 months; models trained on data from different years erroneously makes 
confident predictions for survival, though with mortality rate increasing with each model iteration. 
Figure 5b shows a set of predictions for patient survival where mortality rate remains consistent 
over time. The final row of in Figure 5a and 5b shows the feature importance for predictions from 
each model allowing visualisation of drift in model parameters. 

 

 

Figure 5: Predictions from three models for two patients. The bar charts show respective patient probability of survival as 
produced by three models trained on different years; the bubble charts show feature importance of inputs from the models. 

Conclusion 

Our experiments showed that model performance did change with new data, but not always as 
expected. For example, older models sometimes outperformed models trained on more recent 
patients or models trained on larger datasets.  

This demonstrates the importance of having infrastructure to continually monitor the properties of 
the dataset and appraise the performance of the model on contemporary patients as part of the 
learning machine.  

This also demonstrates that the naïve approach of simply retraining models with the latest datasets, 
or with an amalgamation of new and old data, is no guarantee of an updated model with better 
performance. 

Scenario 2:  Silent monitoring for hospital-deployed early detection of Alzheimer’s algorithm 
A digital tool is currently being developed for integration at the Cambridge University Hospital (CUH) 
Memory Clinic to distinguish mild cognitive impairment (MCI) from Alzheimer’s disease. The 
machine learning algorithm was trained on the data from Alzheimer's Disease Neuroimaging 
Initiative (ADNI) and is being tested retrospectively on patients participating in the QMIN-MC 
(Quantitative MRI in NHS Memory Clinics) study. The goal is to deploy the method in memory clinics 
as a decision support tool for clinical diagnosis and prognosis. 

The purpose of this example is to examine if a model trained on a research dataset from the United 
States, would perform as well when tested on real-world clinical data from memory clinics in the 
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United Kingdom. This is an important question because patient outcome (both progressive and 
stable) will not be observable for many years. This means that we may not detect if the method 
performance begins to deteriorate. 

The task of comparing model performance when deployed in different settings involves the 
following: 

Checks on the incoming data (patient characteristics): Are new patients coming from a similar 
distribution as the training data? This can apply to patient demographics, cognitive scores and MRI 
scans, for example. 

Checks on the model outputs: Are the distributions of the model outputs consistent with the 
training/historical data? For example, are the ratios of progressive to stable patients similar? Is the 
distribution of projection values similar? 

Checks on model performance: Ensure the overall performance of the model (for example, the 
accuracy of the stable versus progressive prediction) is like performance with training data. Note the 
ability to do this is limited by the time taken to get ground truth labels – the time for a patient to be 
diagnosed as stable or progressive may be several years. 

A core challenge is defining which metrics should be used to assess the model’s current state, how 
this can be done in a timely manner, and what interventions can be taken when encountering 
unexpected behaviour. 

Initial findings and conclusion 
We conducted an initial proof-of-concept prediction task for distinguishing between MCI and 
Alzheimer’s disease for patients from three different cohorts: ADNI (research cohort), NHS Memory 
Clinics (QMIN-MC) and MACC (Memory Aging and Cognition Centre memory clinic research cohort). 

For the initial work, we focussed on MCI versus Alzheimer’s disease, due to the availability of ground 
truth labels across datasets from the three different cohorts. This allows us to measure performance 
differences between the three sites as well as the presence of data drift and explore the potential 
for optimizing performance by combining data between sites for the trained model. 

Our initial findings demonstrate that the deployment of an AI method to a new demography for this 
task is complex for optimisation, with trade-offs in dataset size and drift in features of importance 
for the classification task being important considerations. A learning machine that can provide a 
clear framework for monitoring decisions around which data to use in training is therefore vital. 

Learning machines as generic systems: wider areas of application. 
We have illustrated the concept through potential applications in medicine but as noted at the 
outset, it is essentially generic and is potentially widely applicable.  Consider the justice settings, 
where machine learning algorithms may provide predictions of violent behaviours or probability of 
an individual re-offending after release from prison. The patient from the healthcare examples 
becomes the prisoner in the justice context, and rather than a medical diagnosis we may use 
features relating to an individual’s crime and behaviour whilst in prison. The learning machines 
infrastructure around this can remain the same. In fact, it may even become more poignant as the 
ethical considerations around algorithm-supported decision making in a justice context mean 
continual monitoring of its fairness and accuracy is essential and a legal requirement [15]. 

It may be possible to utilise learning machines in even more diverse settings – for example, in urban 
planning where the equivalent of medical histories are events in the life journeys of individuals and 
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households. This would then become a tool for analysing some of the challenges of individual lives 
as a basis for informing future planning decisions such as transport or housing investment. 

6. Concluding comments. 

We have progressed through the proof-of-concept stage by building the software for a working 
‘learning machine’. We have illustrated its potential through two examples. The next steps will be to 
use more data sets and work towards collaborations with clinicians and decision makers utilising 
algorithms, models and evolving data over time in optimal ways. 
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Annex: System Diagram 

Figure 4 conceptually shows the interaction between the components of the learning machine, 
patients, clinicians, and data scientists. The feedback referred to earlier is shown as an outer loop in 
this diagram. The inner loop is designed to evaluate model performance as the data changes over 
time and to signal the time point when the ML-model must be retrained. Table 1 below defines the 
labelled variables. 

 

 

Figure 6: Learning machine system diagram with symbols. 

 
 
 

Variable Meaning 
𝑡 Current learning machine time step 
𝑇 Time step when model was last retrained 
𝑥! New patient data at time 𝑡 
𝑋! Patient data and history up to and including 

time 𝑡 
𝜃"  Model trained using data up to time 𝑇 ≤ 𝑡 
𝑦!(  Model prediction for patient arriving at time 𝑡 
𝜎! Uncertainty of 𝑦!(     
𝐼! Interpretation of 𝑦!(  
𝑦! Practitioner’s decision at time 𝑡 
𝑟! Treatment outcome for patient that arrived at 

time 𝑡 
Table 1: Definition of variables 
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